期刊文献+

算术级数中的五素数平方和定理

On Hua's Five Prime Squares Theorem with One Prime in Arithmetic Progressions
原文传递
导出
摘要 设N是充分大的正整数满足N≡5mod 24,l和d是满足(l,d)=1的整数.A0,A>1是满足A0=600A+2000的正常数.本文证明对所有的整数0<d≤D0= N^(1/4)log^(-A0)N,除了至多O(D0log-AN)个例外,方程N=p12+p22+…+p52有素数解p1,p2,…,p5,其中p1≈l mod d. Let N be a sufficiently large positive integer satisfying N ≡ 5 mod 24, l and d be integers satisfying (l, d) = 1. Denote by A0 and A 〉 1 the positive constants, satisfying A0 = 600A+2000. For all integers 0 〈 d ≤ D0 = N^1/4 log^-A0 N, with at most O(D0 log^-A N) exceptional values, the equation N = p1^2 + p2^2 + … + p5^2 has solutions in primes p1,p2,…,p5, such that p1 ≡ l mod d.
作者 孟宪萌 崔振
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第2期209-218,共10页 Acta Mathematica Sinica:Chinese Series
基金 科技部973项目(2007CB807903) 山东省科技发展项目(2006GG2310001) 博士后基金(200602004)
关键词 大筛法 圆法 加性问题 large sieve circle method additive problem
  • 相关文献

参考文献7

  • 1Hua L. K., Some results in the additive prime number theory, Quart. J. Math., 1938, 9: 68-80.
  • 2Cui Z., Hua's five primes squares theorem in arithmetic progressions, Acta Mathematica Sinica, Chinese Series, 2003, 46(6): 1171-1188.
  • 3Liu J. Y., Zhan T., Hua's theorem on prime squares in short intervals, Acta Mathematica Sinica, English Series, 2000, 16(1): 1-22.
  • 4Wang Y. H., Numbers representable by five prime ssquares with primes in arithmetic progressions, Acta Arith., 1990, 19: 375-390.
  • 5Halupczok K., On the number of representations in the ternary Goldbach problem with one prime number in a given residue class, J. Number Theory, 2006, 117: 292-300.
  • 6Pan C. D., Pan C. B., Goldbach conjecture, Beijing: Science Press, 1992.
  • 7Montgomery H. L., Vaughan R. C., The exceptional set in Goldbach's problem, Acta Arith., 1975, 27: 353-370.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部