摘要
设Λ是特征不整除n的域k上的二元外代数,■是Λ的Zn-Galois覆盖代数.首先构造了■的极小投射双模分解,并由此清晰地计算了■的各阶Hochschild同调和上同调群的维数;并且在域的特征为零时,计算了■的循环同调群的维数.
Let Λ be the exterior algebras in two variables over a field k satisfying chark + n, Λ^~ be the Zn-Galois covering of Λ. We construct a minimal projective bimodule resolution of Λ^~, and then we can explicitly calculate the Hochschild homology and co-homology of Λ^~. Moreover, the cyclic homology of Λ^~ can be calculated in case the underlying field is of characteristic zero.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2008年第2期241-252,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学青年基金(10501010)
湖北省教育厅重点基金(D200510005)资助项目