期刊文献+

完全二叉树理论的计算复杂度 被引量:2

On the Computational Complexity of the Theory of Complete Binary Trees
原文传递
导出
摘要 完全二叉树的一阶理论已被证明具有量词消去的性质,进而计算了完全二叉树模型中元素的CB秩.本文利用有界Ehrenfeucht-Frassé博弈研究完全二叉树的一阶理论,证明了此理论的时间计算复杂度上界为22cn,空间计算复杂度上界为2dn(其中n为输入长度,c,d为合适的常数). The first-order theory of a complete binary tree is decidable by the quantifier elimination, we also know the CB rank of elements of a complete binary tree. In this paper, by using the bounded Ehrenfeucht-Fraissé game, we demonstrate that the first-order theory of a complete binary tree can be decided within linear double exponential Turing time 2^2cn and Turing space 2^cn (n is the length of input, c and d are suitable constants).
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第2期311-318,共8页 Acta Mathematica Sinica:Chinese Series
关键词 完全二叉树的一阶理论 有界Ehrenfeucht-Fraissé博弈 计算复杂度 first-order theory of a complete binary tree bounded Ehrenfeucht-Fraissé game upper bounds for computational complexity
  • 相关文献

参考文献6

  • 1Vorobyov S., On the bounded theories of finite trees, In Asian'96 Computing Science Conference, Lect. Notes Comput. Sci., 1996.
  • 2Liu J. Q., Liao D. S., Luo L.B., Quantifier elimination for complete binary trees, Acta Mathematica Sinica, Chinese Series, 2003, 46(1): 95-102.
  • 3Chen L., Shen F. X.,The CB rank of the elements in complete binary trees, Acta Mathematica Sinica, Chinese Series, 2005, 48(2): 245-250.
  • 4Ehrenfeucht A., An application of games to the completeness problem for formalized theories, Fund. Math., 1961, 49: 129-141.
  • 5Ferrante J., Rackoff C., The computational complexity of Logical theories, Lecture Notes in Mathematics, Vol 718, 1979.
  • 6Luo L. B., On the computational complexity of the theory of abelian groups, Annals of Pure and Applied Logic, 1988, 37: 205-248.

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部