期刊文献+

表面纳米结构的自组装生长 被引量:2

Self-organized growth of surface nanostructures
原文传递
导出
摘要 无论是对低维基本物理以及其中新奇量子现象的探索与认识,还是微电子工业水平的持续发展,都迫切地需要掌握一种能够精确、可靠地操控表面纳米结构的方法.自组织生长,即粒子聚集时由于介观尺度力场或受限运动作用而导致的自发有序现象,在原子尺度上可以实现对纳米结构的精确控制,而在介观尺度上又可以调节这些微观结构单元的组织构型.文章结合作者近年来在表面纳米结构生长与物理性质研究方面所做过的工作,从自组织生长的原理出发,介绍了对金属纳米线、有序分子薄膜以及合金量子点阵列生长进行人工操控的方法. To control the growth of surface nanostructures precisely and dependably is crucial for the exploration of fundamental physics and novel quantum phenomena in low - dimensional systems, as well as for the continuable development of the microelectronic industry. Self-organized growth, an autonomous order phenomenon mediated by mesoscale force fields or kinetic limitations in growth the atomic scale and their organization at mesoscale levels. processes, enables the control of nanostructures on Starting from our recent study of the growth and properties of surface nanostructures we discuss both the basic physics of self-organized growth and the controllability of metal nanowires, ordered molecule films, and arrays of metal alloy nanodots.
作者 郭建东
出处 《物理》 CAS 北大核心 2008年第2期86-92,共7页 Physics
基金 国家自然科学基金(批准号:10704084 10574146) 国家重点基础研究发展计划(批准号:2006CB921300 2007CB936800)
关键词 表面纳米结构 吸附与迁移 表面重构 surface nanostructures, adsorption and diffusion, surface reconstruction
  • 相关文献

参考文献37

  • 1Binnig G,Rohrer H. Rev. Mod. Phys., 1987,59:615.
  • 2Binnig G, Quate C F, Gerber Ch. Phys. Rev. Lett. ,1986, 56 : 930.
  • 3Eigler D M, Schweizer E K. Nature, 1990,344 : 524.
  • 4Kastner M A. Phys. Today,1993, 46(1 ) :24.
  • 5Dekker C. Phys. Today, 1999,52(5 ) :22.
  • 6Ito T, Okazaki S. Nature, 2000, 406 : 1027.
  • 7Gates B D et al. Chem. Rev. , 2005, 105:1171.
  • 8Whitesides G M, Mathias J P, Seto C T. Science, 1991, 254 : 1312.
  • 9Lindsey J S. New J, Chem., 1991,15:153.
  • 10Barth J V, Costantini G, Kern K. Nature, 2005,437:671.

同被引文献62

  • 1王伟.分子电子器件的电性能测试方法[J].物理,2007,36(4):288-294. 被引量:4
  • 2VUILLAUME D.Molecular-scale electronics[J].C R Physique,2008,9(1):78-94.
  • 3DE LIMA D B,NERO J D.Fundamental rules to construct highly integrated organic nanowires as nanodevices[J].J Comput Theor Nanosci,2008,5(7):1-5.
  • 4CAI L,CABASSI M A,YOON H,et al.Reversible bistable switching in nanoscale thiol-substituted oligoaniline molecular junctions[J].Nano Lett,2005,5(12):2365-2372.
  • 5ZHU Y,GERGEL N,MAJUMDAR N,et al.First optically active molecular electronic wires[J].Org Lett,2006,8(3):355-358.
  • 6GUO X,SMALL J P,KLARE J E,et al.Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules[J].Science,2006,311(5759):356-359.
  • 7GUO X,WHALLEY A,KLARE J E,et al.Single-molecule devices as scaffolding for muhicomponent nanostructure assembly[J].Nano Lett,2007,7(5):1119-1122.
  • 8ASHWELL G J,URASINSKA B.WANG C,et al.Singlemolecule electrical studies on a 7 nm long molecular wire[J].Chem Commun,2006,4706-4708.
  • 9FRAMPTON M J,ANDERSON H L Insulated molecular wires[J].Angew Chem Int Ed,2007,46(7):1028-1064.
  • 10WAGNER R W,JOHNSOIN T E,LINDSEY J S.Soluble synthetic multi-porphyrin arrays 1 modular design and synthesis[J].J Am Chem Soc,1996,118(45):11166-11180.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部