摘要
In this paper, we consider the macroscopic quantum tunnelling and self-trapping phenomena of Bose-Einstein condensates (BECs) with three-body recombination losses and atoms feeding from thermal cloud in triple-well potential. Using the three-mode approximation, three coupled Gross-Pitaevskii equations (GPEs), which describe the dynamics of the system, are obtained. The corresponding numerical results reveal some interesting characteristics of BECs for different scattering lengths. The self-trapping and quantum tunnelling both are found in zero-phase and :r-phase modes. Furthermore, we observe the quantum beating phenomenon and the resonance character during the self-trapping and quantum tunnelling. It is also shown that the initial phase has a significant effect on the dynamics of the system.
In this paper, we consider the macroscopic quantum tunnelling and self-trapping phenomena of Bose-Einstein condensates (BECs) with three-body recombination losses and atoms feeding from thermal cloud in triple-well potential. Using the three-mode approximation, three coupled Gross-Pitaevskii equations (GPEs), which describe the dynamics of the system, are obtained. The corresponding numerical results reveal some interesting characteristics of BECs for different scattering lengths. The self-trapping and quantum tunnelling both are found in zero-phase and :r-phase modes. Furthermore, we observe the quantum beating phenomenon and the resonance character during the self-trapping and quantum tunnelling. It is also shown that the initial phase has a significant effect on the dynamics of the system.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos10774120and10475066)
the Natural Science Foundation of Gansu Province,China(Grant No3ZS051-A25-013)
the Natural Science Foundation of Northwest Normal University of China(Grant No NWNU-KJCXGC-03-17)