摘要
In this paper, bendloss characteristics of an optical fibre are investigated in detail, and the results show that the resonator with a smaller ring radius, wider free spectrum range (FSR), higher fineness (f) and quality-factor (Q) can be achieved by using microfibres. Based on the improved fused taper technique, a high-quality microfibre with 5 ttm radius has been fabricated, and an all-fibre micro-ring resonator with a radius of only 500μm is realized using self-coiling coupling method. The good-resonant characteristic makes the all-fibre device be expected to avoid bendloss and connection loss associated with planar waveguide integration.
In this paper, bendloss characteristics of an optical fibre are investigated in detail, and the results show that the resonator with a smaller ring radius, wider free spectrum range (FSR), higher fineness (f) and quality-factor (Q) can be achieved by using microfibres. Based on the improved fused taper technique, a high-quality microfibre with 5 ttm radius has been fabricated, and an all-fibre micro-ring resonator with a radius of only 500μm is realized using self-coiling coupling method. The good-resonant characteristic makes the all-fibre device be expected to avoid bendloss and connection loss associated with planar waveguide integration.
基金
Project supported by the National Natural Science Foundation of China(Grant No60607001)
the Natural Science Foundation of Beijing,China(Grant No4052023)
the Talents of Beijing Jiaotong University,Beijing,China(Grant No2007RC015)