期刊文献+

缺氧和收缩状态下不同肌纤维类型骨骼肌葡萄糖转运速率与肌糖原含量的关系 被引量:11

Relationship between Glucose Transport Rate and Glycogen Content in Different Skeletal Muscle Fiber Types under Hypoxia or/and Contraction
下载PDF
导出
摘要 目的:观察大鼠不同类型骨骼肌肌纤维在缺氧、收缩以及两者联合刺激下,其葡萄糖跨膜转运速率(GTR)与肌糖原含量的关系。方法:取不同肌纤维占优势的3种大鼠骨骼肌(比目鱼肌、趾长伸肌和肱骨内上髁肌),离体条件下进行不同的刺激处理(基础对照、缺氧、收缩、缺氧+收缩),测定GTR和肌糖原含量并分析它们之间的关系。结果:骨骼肌肌纤维类型不同,其GTR对缺氧、收缩、缺氧+收缩刺激的反应有所不同,其肌糖原的基础量、不同刺激后的残留量及消耗量也不尽相同。3种肌纤维类型骨骼肌的GTR均与肌糖原的残留量呈负相关倾向,而与消耗量呈正相关倾向。氧化型(Ⅱa型和Ⅰ型)肌纤维(趾长伸肌和比目鱼肌)比酵解型(Ⅱb型)肌纤维(肱骨内上髁肌)在肌糖原消耗量较少的情况下可引起GTR较高的增加。这一结果从肌纤维类型的角度揭示了有氧运动(可更多地动员氧化型肌纤维)在预防和改善胰岛素抵抗中能够发挥重要作用的机理。 Objective To investigate the relationship between glucose transport rate (GTR) and glycogen content in different skeletal muscle fiber types stimulated by hypoxia, or contraction or their combination in rats. Methods Muscles (soleus, flexor digitorum brevis, and epitrochlearis) with differently dominant fiber types in rats were isolated and treated by stimulation of hypoxia or contraction or hypoxia plus contraction as well as basal condition in vitro. The GTR and glycogen content in muscles were determined and their relationship was analyzed. Results With different muscle fiber types, the responses of GTR to hypoxia, contraction and hypoxia plus contraction were different, and the basal, residual and consumed glycogen contents were different, too, by the stimuli. GTR showed tendency of inverse correlation with the residual glycogen content but of positive correlation with the consumed glycogen content in all three muscle fiber types. By a less consumption of muscle glycogen, a higher GTR could be induced in the oxidative muscle fibers of type Ⅱa and Ⅰ (flexor digitorum brevis and soleus) than that in the glycolytic fibers of type Ⅱb (epitrochlearis) under the stimulation. This result revealed from the fiber type point of view why the aerobic exercise which can mobilize more oxidative muscle fibers to contract plays a very important role in prevention or improvement of insulin resistance.
出处 《中国运动医学杂志》 CAS CSCD 北大核心 2008年第2期165-169,共5页 Chinese Journal of Sports Medicine
基金 国家自然科学基金项目(批准号:30270636和30671015)
关键词 葡萄糖转运速率 肌糖原 肌纤维类型 缺氧 收缩 glucose transport rate, glycogen, muscle fiber type, hypoxia, contraction
  • 相关文献

参考文献20

  • 1Krook A,Wallberg-Henriksson H,Zierath JR.Sending the signal:molecular mechanisms regulating glucose uptake.Med Sci Sports Exerc,2004,36(7):1212-7.
  • 2Derave W,Lund S,Holman GD,et al.Contraction-stimulated muscle glucose transport and GLUT一4 surface content are dependent on glycogen content.Am J Physiol,1999,277(6 Pt 1):E1103-10.
  • 3Reynolds TH 4th,Brozinick JT Jr,Rogers MA,et al. Mechanism of hypoxia-stimulated glucose transport in rat skeletal muscle:potential role of glycogen.Am J Physiol,1998,274(5 Pt 1):E773-8.
  • 4艾华,李显,荣湘江,李百花,陈志民,刘晓鹏,谢岚.缺氧和肾上腺素对骨骼肌葡萄糖转运的影响[J].中国运动医学杂志,2005,24(3):279-284. 被引量:1
  • 5Ai H,Ralston E,Lauritzen HP,et al.Disruption of microtubules in rat skeletal muscle does not inhibit insulin-or contraction-stimulated glucose transport.Am J Physiol,2003,285(4):E836-844.
  • 6Ploug T,Deurs BV,Ai H,et al.Analysis of GLUT4 distribution in whole skeletal muscle fibers:identification of distinct storage compartments that are recruited by insulin and muscle contractioas.J CeU Biol,1998,142(6):1429-1446.
  • 7艾华,李斌.不同浓度肌酸对骨骼肌收缩能力和葡萄糖跨膜转运速率的影响[J].中国运动医学杂志,2003,22(2):133-137. 被引量:13
  • 8Karlsson J,Diamant B,Saltin B.Muscle metabolites during submaximal and maximal exercise in man.Scand J Clin Lab Invest,1970,26(4):385-394.
  • 9Daugaard JR,Richter EA.Muscle-and fibre type-specific expression of glucose transporter 4,glycogen synthase and glycogen phosphorylase proteins in human skeletal muscle.Pflugers Arch,2004,447(4):452-6.
  • 10Henriksen EJ,Bourey RE,Rodnick KJ,et al.Glucose transporter protein content and glucose transport capacity in rat skeletal muscles.Am J Physiol,1990,259(4 pt 1):E593-598.

二级参考文献39

  • 1艾华,李显,荣湘江,李百花,陈志民,刘晓鹏,谢岚.磷脂酶D参与胰岛素和收缩引起的I型肌纤维葡萄糖跨膜转运的信号转导体系[J].中国运动医学杂志,2004,23(5):494-498. 被引量:3
  • 2[1]Mendes RR, Tirapegui J. Creatine: the nutritional supplement for exercise - current concepts. Arch Latinoam Nutr, 2002, 52(2): 117-127.
  • 3[2]Hespel P, Eijnde BO, Derave W, Richter EA. Creatine supplementation: exploring the role of the creatine kinase/phosphocreatine system in human muscle. Can J Appl Physiol, 2001, 26 Suppl: S79-102.
  • 4[3]Op't Eijnde B, Richter EA, Henquin JC, Kiens B, Hespel P. Effect of creatine supplementation on creatine and glycogen content in rat skeletal muscle. Acta Physiol Scand, 2001, 171(2): 169-176.
  • 5[4]Op't Eijnde B, Urso B, Richter EA, Greenhaff PL, Hespel P. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes, 2001, 50(1): 18-23.
  • 6[5]Ihlemann J, Ploug T, Hellsten Y, Galbo H. Effect of tension on contraction-induced glucose transport in rat skeletal muscle. Am J Physiol, 1999,277: E208-214.
  • 7[6]Ploug T, Deurs BV, Ai H, Cushman SW, Ralston E. Analysis of GLUT4 distribution in whole skeletal muscle fibers: identification of distinct storage compartments that are recruited by insulin and muscle contractions. J Cell Biol, 1998, 142: 1429-1446.
  • 8[7]Lemon P, Boska M, Bredle D, Rogers M, Ziegenfuss T, Newcomer B. Effect of oral creatine supplementation on energetic during repeated maximal muscle contraction. Med Sci Sport Exerc, 1995, 27: S204-211.
  • 9[8]Kreider R, Ferreira M, Wilson M, Grindstaff P, Plisk S, Reinhardy J. Effects of creatine supplementation on body composition, strength and sprint performance. Med Sci Sport Exerc, 1998, 30∶73-82.
  • 10[9]Bemben MG, Bemben DA, Loftiss DD, Knehans AW. Creatine supplementation during resistance training in college football athletes. Med Sci Sports Exerc, 2001, 33(10): 1667-1673.

共引文献12

同被引文献168

引证文献11

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部