期刊文献+

分子生物光子学的进展 被引量:1

An advance in molecular biophotonics
下载PDF
导出
摘要 随着分子生物学和标记技术的进步,光学成像和分析有了很快的发展,无论是从理论上还是应用上都有所突破,展现了良好的前景。本文综述了近年来在分子生物探测中光子学的情况,简介了几种突破光学衍射极限的探测方法,着重阐明了与生化技术密切相关的荧光共振能量转移和荧光相关光谱显微术及其在分子生物学中的应用。 Whether on theory or in applications, optical imaging and analysis have gained great progresses with the developments of biological studies and labeling techniques and which exhibits a good prospect. Recently, the biophotonics advances and several new ways of breaking diffraction limit on the optical imaging are described in this paper. In particular, the progresses on the fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, as well as their applications for resolving molecular biologic problem are discussed in detail.
出处 《生命科学》 CSCD 2008年第1期14-21,共8页 Chinese Bulletin of Life Sciences
基金 "973"项目(2002BC713808) 国家自然科学基金委员会仪器专项(60527004) 面上基金(60408007)
关键词 光学成像和分析 生物光子学 单分子探测 optical imaging and analysis biophotonics single molecule detection
  • 相关文献

参考文献40

  • 1Michalet X, Weiss S. Using photon statistics to boost microscopy resolution. Proc Nail Acad Sci USA, 2006, 103(13): 4797-8
  • 2Ram S, Ward ES, Ober RJ. Beyond Rayleigh's criterion: A resolution measure with application to single- molecule microscopy. Proc Natl Acad Sci USA, 2006, 103(12): 4457-62
  • 3Laurence TA, Kwon Y, Yin E, et al. Correlation spectroscopy of minor fluorescent species: signal purification and distribution analysis. Biophys J, 2007, 92(6): 2184-98
  • 4Merlin R. Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing. Science, 2007, 317 (5840): 927-9
  • 5Taubner T, Korobkin D, Urzhumov Y, et al. Near-field microscopy through a SiC superlens. Science, 2006, 313(5793): 1595
  • 6Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett, 2000, 85(18): 3966-9
  • 7Carrington WA, Lynch RM, Moore ED, et al. Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science, 1995, 268(5216): 1483-7
  • 8Hell SW. Far-field optical nanoscopy. Science, 2007, 316 (5828): 1153-8
  • 9Hofmann M, Eggeling C, Jakobs S, et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA, 2005, 102(49): 17565-9
  • 10Donnert G, Keller J, Medda R, et al. Macromolecular-scale resolution in biological fluorescence microscopy, Proc Natl Acad Sci USA, 2006, 103(31): 11440-5

二级参考文献33

  • 1RIGLER R, ELSON E. Fluorescence correlation spectroscopy: theory and applications[M]. Berlin: Springer, 2001.
  • 2THOMPSON N L, LIETO A M, ALLEN N W. Recent advances in fluorescence correlation spectroscopy[J]. Curr Opin Struct Biol,2002, 12:634-641.
  • 3HESS S T, HUANG S, HEIKAL A A, et al. Biological and chemical applications of fluorescence correlation spectroscopy: a review[J]. Biochemistry, 2002, 41:697-705.
  • 4SCHWILLE P. Fluorescence correlation spectroscopy and its potential for intracellular applications[J]. Cell Biochem Biophys, 2001, 34:383-408.
  • 5ELSON E L. Fluorescence correlation spectroscopy measures molecular transport in cells[J]. Traffic, 2001, 2:789-796.
  • 6HINK M A, BISSELIN T, VISSER A J. Imaging protein-protein interactions in living cells[J]. Plant Mol Biol,2002, 50:871-883.
  • 7KIM S A, SCHWILLE P. Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience[J]. Current Opinion in Neurobiology,2003, 13:583-590.
  • 8SCHWILLE P, MEYER-ALMES FJ, RIGLER R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution[J]. Biophys J, 1997, 72:1878-1886.
  • 9EIGEN M, RIGLER R. Sorting single molecules: application to diagnostics and evolutionary biotechnology[J]. Proc Natl Acad Sci, 1994, 91:5740.
  • 10CHEN Y, MULLER J D, RUAN Q, et al. Molecular bri-ghtness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy[J]. Biophys J, 2002, 82:133-144.

共引文献5

同被引文献24

  • 1陈同生.单个活细胞中生物分子动态行为的FRET实时检测[J].激光生物学报,2006,15(5):540-544. 被引量:1
  • 2林丹樱,马万云.活细胞内的单分子荧光成像方法[J].物理,2007,36(10):783-790. 被引量:4
  • 3Perrin J.Théorie quantique des transferts d' activation entre molécules de méme espéce.Cas des solutions fluorescentes[J].Ann Chim Phys,1932,17(2):283-313.
  • 4F(o)rster T.Zwischenmolekulare energiewanderung und fluoreszenz[J].Ann Physik Leipzig,1948,2:55-75.
  • 5Prasher DC,Eckenrode VK,Ward WW,et al.Primary structure of the aequorea victoria green fluorescent protein[J].Gene,1992,111 (2):229-233.
  • 6冯觉非.应用荧光共振能量转移(FRET)法研究瘦素及外力刺激对于软骨细胞骨架调控蛋白Rh0A的作用[D].北京:北京协和医学院临床医学专业,2008.
  • 7Clegg,RM.Fluorescence resonance energy transfer and nucleic acids[J].Methods Enzymol,1992,211(3):353-388.
  • 8Cornea A,Janovick JA,Maya-Nunez G,et al.Gonadotropin-releasing hormone receptor microaggregation.Rate monitored by fluorescence resonance energy transfer[J].Biol Chem,2001,276(11):2153-2158.
  • 9刘爱平.细胞生物学荧光技术原理和应用[M].2版.合肥:中国科学技术大学出版社,2012:323.
  • 10刘德龙,郭慧芳,白娟,等.FRET探测活细胞中蛋白质相互作用的进展[C].太原:第八届全国发光分析暨动力学分析会议,2005.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部