摘要
设F是区域D内的一族全纯(亚纯)函数,k是一正整数,a≠0是一有穷复数,b为一非负实数,f是F中的任意函数,f的零点的重数至少是k(k+1).且当f(z)f(k)(z)=a时,|f(k)(z)|≤b,则F在D内正规.
Let F be a family of holomorphic (meromorphic) functions in a domain D, k be a positive integer,α ≠ 0 be a finite complex number, and b be a non-negative real number. If for each f ∈F, all zeros of f have a multipility at least k(k + 1) , | f^(k) (z) |≤ b whenever f(z)f^(k) (z) = α. Then F is normal in D.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第2期39-42,共4页
Journal of Southwest University(Natural Science Edition)
关键词
全纯函数
亚纯函数
正规族
分担值
holomorphic function
meromorphic function
normal family
shared value