摘要
舰船摇荡运动具有混沌特性,因而可以应用混沌理论对其进行预报。介绍了混沌时间序列预测原理;建立了基于混沌理论相空间重构技术的RBF神经网络模型,并将其用于舰船摇荡运动预报;通过对某实船纵摇时历的预报计算,证明了采用混沌和神经网络相结合的预报方法,能有效提高预报精度和延长预报时长。
Ship swaying motion can be predicted by the chaos theory due to its chaotic characteristic. So,the prediction principle of chaotic time series is introduced in this paper. The RBF neural network is presented based on phase-space reconstruction of chaos theory and is used to ship swaying motions' prediction. Prediction results on a ship's pitch time series show that the method based on combination of chaos and neural network can improve the prediction precision and extend the prediction term.
出处
《舰船科学技术》
北大核心
2008年第1期67-70,共4页
Ship Science and Technology
关键词
耐波性
混沌
神经网络
船舶运动
极短期预报
seakeeping
chaos
neural network
ship motions
extreme short term prediction