期刊文献+

混沌理论和神经网络相结合的舰船摇荡运动极短期预报 被引量:7

Extreme short term prediction of ship swaying motions based on combination of chaos and neural network
下载PDF
导出
摘要 舰船摇荡运动具有混沌特性,因而可以应用混沌理论对其进行预报。介绍了混沌时间序列预测原理;建立了基于混沌理论相空间重构技术的RBF神经网络模型,并将其用于舰船摇荡运动预报;通过对某实船纵摇时历的预报计算,证明了采用混沌和神经网络相结合的预报方法,能有效提高预报精度和延长预报时长。 Ship swaying motion can be predicted by the chaos theory due to its chaotic characteristic. So,the prediction principle of chaotic time series is introduced in this paper. The RBF neural network is presented based on phase-space reconstruction of chaos theory and is used to ship swaying motions' prediction. Prediction results on a ship's pitch time series show that the method based on combination of chaos and neural network can improve the prediction precision and extend the prediction term.
出处 《舰船科学技术》 北大核心 2008年第1期67-70,共4页 Ship Science and Technology
关键词 耐波性 混沌 神经网络 船舶运动 极短期预报 seakeeping chaos neural network ship motions extreme short term prediction
  • 相关文献

参考文献9

二级参考文献19

  • 1[1]Kugiumtzis D. State Space Reconstruction Parameters in the Analysis of Chaotic Time Series-the Role of the Time Window Length[J]. Physica D. 1996, 95:13-28.
  • 2[2]Farmer J D, Sidorowich J J. Predicting Chaotic Time Series[J]. Phys. Rev. Lett. 1987, 59: 845-848.
  • 3[3]Kugiumtzis D, Lingjarde O C, Christophersen N. Regularized Local Linear Prediction of Chaotic Time Series[J]. Physica D. 1998, 112:344-360.
  • 4[4]Casdagli M. Nonlinear Prediction of Chaotic Time Series[J]. Physica D. 1989, 35:335-356.
  • 5[5]Navone H D,Ceccatto H A. Forecasting Chaos From Small Data Set: A Comparison of Different Nonlinear Algorithms[J]. J. Phys. A. 1995, 28(12):3381-3388.
  • 6[6]Lorenz E N. Deterministic Nonperiodic Flow[J]. J. Atmos. Sci. 1991, 20:579-616.
  • 7[1]Takens F 1981 Lecture Notes Math. 898 366
  • 8[2]Potapov A 1997 Physica D 101 207
  • 9[3]Yuan J et al 1997 Acta Phys. Sin. 46 1291(in Chinese)[袁坚等 1997 物理学报 46 1291]
  • 10[4]Lai Y C et al 1996 Phys. Lett. A 218 30

共引文献74

同被引文献38

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部