期刊文献+

标架型RKHS中的SVM的半参数估计 被引量:1

Semiparametric estimation of SVM in frameable RKHS
下载PDF
导出
摘要 在基于标架型的再生核希尔伯特空间中,研究了SVM算法下,解的对偶形式和原形式之间的关系,进而将SVM算法与最小二乘法相结合,讨论了支持向量机的半参数估计. Relationship between the dual form and primal form of solution based on SVM method in a frameable reproducing kernel Hilbert space is studied. Furthermore, by combining SVM method with least squares method, semiparametric estimation of SVM is discussed.
作者 周德强
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2008年第2期150-152,159,共4页 Journal of Zhejiang University(Science Edition)
关键词 支持向量机 再生核希尔伯特空间 半参数估计 support vector machines reproducing kernel Hilbert space semiparametric estimation
  • 相关文献

参考文献8

  • 1GIROSI F, JONES M, POGGIO T. Regularization theory and neural networks architectures[J]. Neural Computation, 1995,7 (2) :219-269.
  • 2TIKHONOV A N, ARSENIN V Y. Solution of Ill-Posed Problems[M]. Washington DC: W H Winston, 1977.
  • 3VAPNIK V. Statistical Learning Theory [M]. New York: John Wiley and Sons, 1998.
  • 4ARONSZAJN N. Theory of reproducing kernels[J]. Transactions of American Mathematical Society, 1950, 68(2):337-341.
  • 5EVGENIOU T, PONTIL M,POGGIO T. Regularization networks and support vector machine[J]. Advance in Computational Mathematics, 2000, 13 ( 1 ):1-50.
  • 6阎辉,张学工,李衍达.支持向量机与最小二乘法的关系研究[J].清华大学学报(自然科学版),2001,41(9):77-80. 被引量:60
  • 7周德强,李落清.基于Riesz基的再生核及支持向量机[J].浙江大学学报(理学版),2004,31(5):503-506. 被引量:2
  • 8KIMERDOF G, WAHBA G. Some results on tchebycheffian spline functions[J]. J of Mathematical Analysis and Applications, 1971,33(5) : 82-95.

二级参考文献10

  • 1VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 2VAPNIK V N. Statistical Learning Theory[M]. New York: John Wiley and Sons, 1998.
  • 3TIKHONOV A N, ARS ENIN V Y. Solution of Illposed Problems[M]. Washington DC: W H Winston, 1977.
  • 4ARONSZAJN N. Theory of reproducing kernels[J].Trans Am Math Soc, 1950, 68(2):337-401.
  • 5MALL AT S. A Wavelet Tour of Signal Processing[M]. New York: Academic Press, 1998.
  • 6GIROSI F, JONES M, POGGIO T. Regularization theory and neural networks architectures[J]. Neural Computation, 1995, 10(6): 219-269.
  • 7EVGENIOU T, PONTIL M, POGGIO T. Regularization networks and support vector machine[J]. Advance in Computational Mathematics. 2000, 13(1): 1-50.
  • 8DAUBECHIES I. Ten Lectures on Wavelet [M].Montpelier Vermont: Captial City Press, 1992.
  • 9边肇祺,模式识别(第2版),2000年
  • 10崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995..

共引文献60

同被引文献11

  • 1Fan Jianping,Luo Hangzai,Li Xiaodong.Semantic VideoClassification by Integrating Flexible Mixture Model withAdaptive EM Algorithm[C]//Proc.of the 5th ACM SIGMMInternational Workshop on Multimedia Information Retrieval.New York,USA:ACM Press,2003.
  • 2Cohen D A,Ghahramani Z,Jordan M I.Active Learning withStatistical Model[J].Journal of Artificial Intelligence Research,1996,4(1):129-145.
  • 3Natsev A P,Naphade M R,Tesic J.Learning the Semantics ofMultimedia Queries and Concepts from a Small Number ofExamples[C]//Proc.of the 13th Annual ACM InternationalConference on Multimedia.New York,USA:ACM Press,2005.
  • 4Snoek C G M,Worring M,Gemert J C V.The ChallengeProblem for Automated Detection of 101 Semantic Conceptsin Multimedia[C]//Proc.of the 14th Annual ACM InternationalConference on Multimedia.New York,USA:ACM Press,2006.
  • 5Yang Jun,Yan Rong,Hauptmann A.Cross-domain VideoConcept Detection Using Adaptive SVMs[C]//Proc.of the15th International Conference on Multimedia.New York,USA:ACM Press,2007.
  • 6Huang Teming,Kecman V,Kopriva L.Kernel Based Algo-rithms for Mining Huge Data Sets:Supervised,Semi-Supervised,and Unsupervised Learning[M].Berlin,Germany:Springer-Verlag,2010.
  • 7Platt J.Fast Training of Support Vector Machines UsingSequential Minimal Optimization[Z].1999.
  • 8Zhu Xiaojin,Ghahramani Z,Lafferty J.Semi-supervisedLearning Using Gaussian Fields and Harmonic Functions[C]//Proc.of the 20th International Conference on MachineLearning.Washington D.C.,USA:[s.n.],2003.
  • 9Simon T,Edward C.Support Vector Machine Active Learningfor Image Retrieval[C]//Proc.of the 9th ACM InternationalConference on Multimedia.New York,USA:ACM Press,2001.
  • 10Wang Lei,Kap L C,Zhang Zhihua.Bootstrapping SVM ActiveLearning by Incorporating Unlabelled Image for ImageRetrieval[C]//Proc.of IEEE Computer Society Conference onComputer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Computer Society,2003.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部