期刊文献+

工艺因素对超声-挤压过滤法制备β-榄香烯固体脂质纳米粒平均粒径的影响 被引量:4

Effect of the Technological Factors on the Mean Diameter of β-elemene Solid Lipid Nanoparticles Prepared by Sonication and Membrane Extrusion
下载PDF
导出
摘要 目的研究工艺因素对β-榄香烯固体脂质纳米粒(SLN)平均粒径的影响。方法以超声-挤压过滤法制备β-榄香烯SLN,研究超声强度、超声时间以及制备温度等因素对其平均粒径的影响。结果绝大多数β-榄香烯SLN的平均粒径小于150 nm。其平均粒径随超声时间的延长和制备温度的提高而有所下降,但是受持续超声时间的影响较小。考察的制剂中,在超声强度为400W、超声温度为80℃、超声时间为6 min条件下制备的β-榄香烯SLN的平均粒径最小。结论采用超声-挤压过滤法可制备β-榄香烯SLN,超声强度、总体超声时间以及温度等是影响其平均粒径的主要工艺因素。 Objective To study the influence of the technological factors on the mean particle size of β - elemene solid lipid nanoparticles( SLN ). Methods β - elemene SLN were prepared by the method combining sonication and membrane extrusion. Effects of the technological factors on the mean particle size of β - elemene SLN were studied, including sonication strength, total period of sonication length and preparation temperature, etc. Results The results showed that most mean diameter of β - elemene SLNs was less than 150nm. The size of β - elemene SLN decreased with the increase of the total period of sonication length or the preparation temperature, but less influenced by the sonication interval length. Among the detection samples, smaller β - elemene SLN could be obtained at the sonication strength of 400w, with a total period of sonication length of 6min and at 80℃, respectively. Conclusion β - elemene SLN could be prepared by the method of sonication and membrane extrusion, the technological factors of sonication strength, total period of sonication length and preparation temperature have influence on the particle size.
出处 《时珍国医国药》 CAS CSCD 北大核心 2008年第2期413-414,共2页 Lishizhen Medicine and Materia Medica Research
关键词 工艺因素 β-榄香烯固体脂质纳米粒 超声-挤压过滤法 Technological factor β -elemene solid lipid nanoparticles Sonication and membrane extrusion
  • 相关文献

参考文献11

  • 1Mehnert W, Mader K. Solid lipid nanoparticles, production,characterization and applications [ J ]. Adv. Drug Deliv. Rev,2001,47(2 -3) :165.
  • 2Charcosset C, El- Harati A, Fessi H. Preparation of solid lipid nanoparticles using a membrane contactor[ J]. J Control Release,2005,108( 1 ) :112.
  • 3Wang YZ, Deng YH, Mao SR, et al. Characterization and body distribution of β -elemene solid lipid nanoparticles (SLN) [ J ]. Drug dev. Ind. Pharm. , 2005,31 ( 8 ) :769.
  • 4Mei Z, Chen H, Weng T, et al. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide[ J]. Eur. J. Pharm. Biopharm, 2003, 56 (2) :189.
  • 5Park JH, Kwon S, Nam JO, et al. Self- assembled nanoparticles based on glycol chitosan bearing 513 - cholanic acid for RGD peptide delivery[J]. J. Control. Release,2004,95 (3) : 579.
  • 6Pellequer Y, Ollivon M, Barratt G. Formulation of liposomes associated with recombinant interleukin - 2 : effect on interleukin - 2 activity [ J ]. Biomed. Pharmacother,2004,58 ( 3 ) : 162.
  • 7Schwarz C, Mehnert W, Luchs JS, et al. Solid lipid nanoparticles(SLN) for controlled drug delivery. I. Production, characterization and sterilization [ J ]. J. Control. Release,1994,30( 1 ) : 83.
  • 8Siekmann B, Westesen K. Melt - homogenized solid lipid nanoparticles stabilized by the nonionic surfactant tyloxapol. Ⅰ. Preparation and particle size determination[ J]. Pharm. Phartel macol, Lett, 1994,3 (5) :194.
  • 9Coulter KS 230 user manual [ M ]. Customizing the KS program. 14.
  • 10Akkar A, Muller RH. Formulation of intravenous Carbamazepine emulsions by SolEmuls technology [ J ]. Eur. J. Pharm. Biopharm, 2003, 55 (3) : 305.

同被引文献45

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部