期刊文献+

两能级原子与单模场非共振耦合系统中的热纠缠现象

Thermal Entanglement of A Two-level Atom Coupled to Single-mode Cavity in Nonresonant System
下载PDF
导出
摘要 利用共生纠缠度,讨论了非旋波近似下非共振的二能级原子与单光子腔肠的热纠缠现象。结果表明:失谐量并不影响系统热纠缠度的演化;该系统存在一临界温度,当系统温度高于这一临界温度时,原子与腔场的纠缠特性将消失;同时系统耦合系数对系统纠缠度也有较大的影响。 The thermal entanglement of a two-level atom coupled to Single-mode cavity with the effect of virtualphoton field in nonresonant system by means of concurrence is investigated. It is shown that detuning frequency has no effect on the evolution of thermal entanglement in the system. There exists a critical temperature, above which thermal entanglement of atom and field mode vanishes. At the same time, the coupling constants of system have great effect on thermal entanglement of atom and field.
作者 张多
出处 《武汉工业学院学报》 CAS 2008年第1期105-107,共3页 Journal of Wuhan Polytechnic University
关键词 热纠缠 失谐频率 共生纠缠度 系统温度 thermal entanglement detuning frequency concurrence temperature of system
  • 相关文献

参考文献7

  • 1Anteneodo C, Souza A M. Enhancement of Thermal Entanglement in Two-qubit XY Modles [J]. J Opt B: Quantum Semiclass Opt, 2003, (5) :73-76.
  • 2Bennett C H, Brassard G, Crepeau C, et al Teleporting An Nnknown Quantum State Via Dual Classical and Einstein-Podolsky-Rose Channels [J]. Phys Rev Lett,1993,70(B):1895-1899.
  • 3郑亦庄,王向红,郭光灿.三粒子纠缠相干态的隐形传态(英文)[J].光子学报,2003,32(6):765-768. 被引量:18
  • 4Vedral V, Plenio M B, Rippin M A, et al. Quantifying Entanglement [ J ]. Phys Rev Lett, 1997,78:2275-2279.
  • 5Wootters W K, Entanglement of Formation of An Arbitrary State of Two Qubits [ J ]. Phys Rev Lett, 1998,80 ( 10 ) :2245-2248.
  • 6Amesen M C, Bose S, Vedral V. Natural Thermal and Magnetic Entanglement in the D Heisenberg Mode [ J ]. Phys Rev Lett, 2001,87 ( 19 ): 3791-3794.
  • 7Cottesman D. Class of Quantum Error-Correcting Codes Saturating the Quantum Hamming Bound. [J] Phys Rev A, 1996,54(3):1862-1868.

二级参考文献13

  • 1[1]Bennett C H, Brassard G, Crepeau C,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels.Phys Rev Lett,1993,70(13):1895~1899
  • 2[2]Bouwmeester D, Pan J W, Matter K,et al.Experimental quantum teleportation.Nature(London), 1997,390:575~579
  • 3[3]Murao M, Jonathan D, Plenio M B,et al. Quantum telecloning and multiparticle entanglement.Phys Rev(A),1999,59(1):156~161
  • 4[4]Grover L K. Quantum telecomputation.e-print quant-ph/9704012; Cirac J I, Ekert A, Huelga S F,et al. Distributed quantum computation over noisy channels.Phys Rev(A),1999,59(6):4249~4254
  • 5[5]Huelga S F, Vaccaro J A, Chefles A,et al.Quantum remote control: Teleportation of unitary operations.Phys Rev(A),2001,63(4):042303-1~4
  • 6[6]Fuchs C A. Nonorthogonal quantum states maximize classical information capacity.Phys Rev Lett,1997,79(6):1162~1165
  • 7[7]Sanders B C. Entangled coherent states.Phys Rev(A),1992,45(9):6811~6815
  • 8[8]Wang X. Bipartite maximally entangled nonorthogonal states.e-print quant-ph/0102011;Wang X,Sanders B C. Multipartite entangled coherent states.Phys Rev(A), 2002,65(1):012303-1~7
  • 9[9]van Enk S J,Hirota O. Entangled coherent states:Teleportation and decoherence.Phys Rev(A),2001,64(4):022313-1~8
  • 10[10]Wang X. Quantum teleportation of entangled coherent states.Phys Rev(A), 2001,64(2):022302-1~4

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部