期刊文献+

在线测量Sn-3.5Ag焊点蠕变的电阻应变 被引量:7

In situ measuring electronic-resistance strains of Sn-3.5Ag solder joints creep
下载PDF
导出
摘要 以焊料(Sn-3.5Ag)在薄铜基片之间制作截面积约为1 mm2,厚度分别为0.42 mm和0.10 mm的试样(其面积与电子封装中的无铅焊点面积大体相同)为对象,利用特制的电子测试系统实时、在线测量试样焊点的微电阻及其剪切应力,并通过串行接口将相关数据传输至计算机。数据经计算机处理后,拟合成实时微电阻和测试时间的关系曲线。基于经典的Griffith断裂模型,建立一个简易数学模型,从理论上论证电阻应变与焊点机械蠕变裂纹之间的关系。研究结果表明:该关系曲线反映焊点的裂纹连续生长、蠕变失效过程,变化趋势与经典结果吻合;在24 MPa应力作用下,厚度为0.42 mm的试样最大电阻应变为0.18,最大电阻应变率为2.2×10-3 s-1;在25 MPa应力作用下,厚度为0.10 mm试样的最大电阻应变为0.036,最大电阻应变率为3.5×10-3 s-1,实验持续时间较厚度为0.42 mm的试样短。 Single shear lap creep specimens with a 1 mm2 cross sectional area and thickness of 0.42 mm and 0.10 mm, respectively (similar in size to small lead-free solder joints used in electronic packaging and jointing) between thin copper strips were fabricated using lead-free solder (Sn-3.5Ag) to quantify their creep strains with in situ micro electronic-resistance measurement. The solder joints' micro electronic-resistance and stress were in situ measured by a tailor-made electronic testing system and recorded by a PC via serial port, then all data of micro electronic-resistance and elapsing time were displayed in curves. The results show that the relationship between microelectronic-resistance and testing time reflects the continual development of damage and fracture mechanisms. Under a shear stress of 24 MPa, the maximum value of electronic-resistance strain of specimen with thickness 0.42 mm is 0.18. The maximum rate of electronic-resistance strain measurement is 2.2×10^-3s^-1. Under a shear stress of 25 MPa, the highest electronic-resistance strain value of specimen with thickness 0.10 mm is lower, which is 0.036. The maximum rate of electronic-resistance strain measurement is 3.5×10^-3s^-1.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第1期80-85,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(50576076)
关键词 无铅焊点 微电阻 蠕变应变 电阻应变 lead-free solder joint micro resistance creep strain electronic-resistance strain
  • 相关文献

参考文献12

  • 1McDougall J, Choi S, Bieler T R, et al. Quantification of creep strain distribution in small crept lead-free in-situ composite and non composite solder joints[J]. Materials Science and Engineering, 2000, A285: 25-34.
  • 2Lau K J, Tang C Y, Chow C L, et al. Microscopic experimental investigation on shear failure of solder joints[J]. International Journal of Fracture, 2004, 130: 617-634.
  • 3ZHAO Jie, Miyashita Y, Mutoh Y. Fatigue crack growth behavior of 96.5Sn-3.5Ag lead-free solder[J]. International Journal of Fatigue, 2001, 23:723-731.
  • 4ZHAO Ji.c, Mutoh Y, Miyashita Y, et al. Fatigue crack growth behavior of Sn-Pb and Sn-bascd lead-free solders[J]. Engineering Fracture Mechanics, 2003, 70: 2187-2197.
  • 5Chen S C, Lin Y C, Cheng C H. The numerical analysis of strain behavior at the solder joint and interface in a flip chip package[J] Journal of Materials Processing Technology, 2006, 171: 125-131.
  • 6Lin C K, Teng H Y. Creep properties of Sn-3.5Ag-0.5Cu lead-free solder under step-loading[J]. J Mater Sci: Mater Electron, 2006, 17: 577-586.
  • 7Kerr M, Chawla N. Creep deformation behavior of Sn-3.5Ag solder/Cu couple at small length scales[J]. Acta Materialia, 2004, 52: 4527-4535.
  • 8GONG Ji-cheng, LIU Chang-qing, Paul P C, et al. Modelling of Ag3Su coarsening and its effect on creep of Su-Ag eutectics[J]. Materials Science and Engineering A, 2006, 427: 60-68.
  • 9Wiese S, Feustel F, Meusel E. Characterisation of constitutive behaviour of SnAg, SnAgCu, and SnPb solder in flip chip joints[J]. Sensors and Actuators A, 2002, 99:188-193.
  • 10Budynas R G. Advanced strength and applied stress analysis[M]. 2nd ed. Beijing: Tsinghua University Press, 2001.

共引文献15

同被引文献51

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部