期刊文献+

基于支持向量机方法的中文组织机构名的识别 被引量:20

Chinese organization names recognition based on SVM
下载PDF
导出
摘要 在应用基本的支持向量机算法的基础上,提出了一种分步递增式学习的方法,利用主动学习的策略对训练样本进行选择,逐步增大提交给学习器训练样本的规模,以提高学习器的识别精度。实验表明,采用主动学习策略的支持向量机算法是有效的,在实验中,中文机构名识别的正确率和召回率分别达到了81.7%和86.8%。 This paper introduced SVM-based method, which used active leaning strategy to incrementally select new instances to be labeled and included in its training set to form an incremental course of learning. The result of the test show that the method is efficient and the precision and recall of Chinese names recognition achieved are 81.7% and 86. 8% respectively.
出处 《计算机应用研究》 CSCD 北大核心 2008年第2期362-364,367,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60496236)
关键词 机构名识别 支持向量机 主动学习 organization names recognition SVM( support vector machine) active learning
  • 相关文献

参考文献9

  • 1PALMER D, DAY D S. A statistical profile of the named entity task [ C] / / Proc of the 5th Conference on Applied Natural Language Processing. Washington D C: [ s. n. ] , 1997: 191 -192.
  • 2VLACHOS A. Active learning with support vector machines [ D] .MS: University of Edinburgh, 2004: 12-14 .
  • 3BERGER A L, PIETRA S A D, DELLA-PIETRA V J. A maximum entropy approach to natural language processing[ J] . Computational Linguistics, 1996, 22 ( 1) : 39 - 71.
  • 4冯冲,陈肇雄,黄河燕,王江伟.最大熵模型的树-栅格最优N解码算法[J].计算机科学,2005,32(10):167-169. 被引量:1
  • 5张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2279
  • 6LEWIS D D, GALE W A. A sequential algorithm for training text classifiers[ C] / /Proc of the 17th ACM International Conference on Research and Development in Information Retrieval. 1994: 3-12.
  • 7PLATT J. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods [ C] / /Advances in Large Margin Classifiers. 2000: 61- 74 .
  • 8VAPNIK V. The nature of statistical learning theory[ M] . New York: Springer, 1995.
  • 9JOACHIMS T. Text categorization with support vector machines: learning with many relevant features[ C] / /Proc of the European Conference on Machine Learning. 1998: 137-142.

二级参考文献5

共引文献2278

同被引文献180

引证文献20

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部