期刊文献+

广义同余神经网络及BP神经网络的比较研究 被引量:4

Study on comparison for GCNNs and BPNN
下载PDF
导出
摘要 从神经网络的结构、激励函数、权值调整算法等方面对三种广义同余神经网络(generalized congruenceneural network,GCNN)及传统BP神经网络(back propagation neural network,BPNN)的异同点进行了比较和研究。通过对正弦函数的逼近性能比较,表明最新改进的第三种GCNN既继承了前两种GCNN收敛速度快的优点,又具有传统BPNN稳定性好的优点;既克服了前两种GCNN不稳定性的缺点,又克服了传统BPNN收敛速度慢的缺点。采用分段线性激励函数有利于GCNN的推广应用。 This paper compared the difference and similarity for three types of GCNN and BPNN in neural networks' structure, activation function, weight adjustment algorithm, etc. The comparisons for approximation performance to sine function show that the 3rd improved GCNN (GCNN3) inherits fast convergent speed in the previous two GCNNs, and is as good as BPNN in stability. GCNN3 overcomes the instability shortage of the previous two GCNNs, and overcomes the slow convergence shortage of BPNN. Piecewise linear activation function in GCNN will in favor of its expanding applications.
出处 《计算机应用研究》 CSCD 北大核心 2008年第2期408-410,449,共4页 Application Research of Computers
基金 成都信息工程学院发展基金资助项目(KYTE200813) 西南交通大学2005年度博士生创新基金资助项目
关键词 神经网络 广义同余 反向传播 neural network generalized congruence BP
  • 相关文献

参考文献5

  • 1JIN Fan. Architectures and algorithms of generalized congruence neural networks [ J] . Journal of Southwest Jiaotong University,1998, 6 ( 2) : 119-125.
  • 2JINFan. Study on principles and algorithms of generalized congruence neural networks[ C] / / Proc of International Conference on Neural Networks and Brain. 1998 : 441- 444.
  • 3胡飞,靳蕃.广义同余神经网络的算法改进与性能分析[J].西南交通大学学报,2001,36(2):136-139. 被引量:4
  • 4孙欣,丁香乾,石硕.BP神经网络在柴油机涡轮增压系统故障诊断中的应用[J].计算机应用研究,2006,23(6):202-204. 被引量:9
  • 5CHEN Yong, WANG Guo-yin, JIN Fan, et al. A novel generalized congruence neural networks[ C] / / Proc of the 2nd International Symposium on Neural Networks. 2005: 455- 460.

二级参考文献9

  • 1杨大力,刘泽民.多层前向神经网络中BP算法的误调分析及其改进的算法[J].电子学报,1995,23(1):117-120. 被引量:15
  • 2Jin Fan,西南交通大学学报,1998年,33卷,2期,119页
  • 3Jin Fan,Proc of Int Conference on Neural Networks and Brain,1998年,441页
  • 4蒋德明.内燃机原理[M].北京:中国农业机械出版社,1982.203-211.
  • 5Haykin S.Neural Networks:A Comprehensive Foundation (2nd Ed.)[A].Upper Saddle River,NJ:Prentice Hall,1999:148-158[D].Beijing:Photocopy Published by Tsinghua University Press,2001.112-122.
  • 6Liu T I,Iyer N R.Diagnosis of Roller Bearing Defacts Using Neural Networks[J].Int.J.Adv.Manuf.Technol.,1993,(8):108-121.
  • 7International Organization for Standardiza-tion. Road Vehicles:Diagnostics on Controller Area Networks ( CAN ) -Part 2 : Network Layer Services[S]. ISO15765-2,2004.
  • 8Frank P M,et al.New Developmentsusing AI in Fault Diagnosis[J].Engineering Application of Artificial Intelligence,1997,10(1):92-109.
  • 9Bavarian B.Introduction to Neural Networks for Intelligent Control[J].IEEE Magazine Control System,1988:86-102.

共引文献10

同被引文献40

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部