摘要
在结合多尺度图像分析和水平集图像分割模型的基础上提出了一种新的多尺度图像分割方法。首先使用引入梯度向量流的全变差方法对图像进行多尺度空间分析,然后使用一种改进的CV模型进行分割。采用变分水平集方法作数值计算,因此该方法能够处理曲线的拓扑变化。实验结果表明该方法是有效的。
A new approach for image segmentation at different scales of observation was proposed based on multiscale image decomposition and active contours model. The method consists of two steps. Firstly, a representation of a given image at multipie scales was derived, by means of a smoothing method which minimized total variation norm of the image incorporated gradient vector flow(GVF). Secondly, an improved Chan-Vese(CV) model was used to segment the image which structures were extracted at each scale. Moreover, this model was implemented using variational level set approach. The experiments obtain preferable results.
出处
《计算机应用研究》
CSCD
北大核心
2008年第2期482-484,共3页
Application Research of Computers
基金
国家自然科学基金资助项目(60572097)
关键词
图像分割
梯度向量流
CV模型
多尺度
image segmentation
gradient vector flow(GVF)
Chan-Vese model
multiscale