期刊文献+

基于支持向量网络和相关反馈的人脸识别

Face recognition based on support vector network and relevance feedback
下载PDF
导出
摘要 采用了一种通过KPCA提取人脸图像特征,线性SVM对特征进行加权,用最近邻法分类人脸的识别系统。整个系统实质上构成了一个支持向量分类网络。为了自动进行网络训练和参数寻优,提出了一套自动相关反馈训练方法;并采用了图像灰度的伽马校正技术减少光照变化对识别的影响,提高了分类器的性能。基于ORL数据库的相关实验表明,在很少样本训练条件下,这样的系统能够获得较高性能。 This paper presented a stratergy for face recognition using KPCA and SVM. The total system was a support vector network for classification task actually. In order to train this network automatically, relevance feedback was utilized for adjusting parameters and a remapping technique was adopted to overcome the illumination problem. These schemes enhanced the performance of this method compare to the traditional PCA and SVM method. The experimental results show that the accuracy of face recognition can be increased with less samples training.
作者 杨绍华 潘晨
出处 《计算机应用研究》 CSCD 北大核心 2008年第2期491-494,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60663003) 宁夏自然科学基金资助项目(NZ0610)
关键词 人脸识别 核主成分分析 支持向量机 相关反馈 face recognition KPCA SVM relevance feedback
  • 相关文献

参考文献14

  • 1BELHUMEUR P N, HESPANHA J P, KRIENGMAN D J. Eigenfaces vs fisherfaces: recognition using class specific linearprojection[ J] .IEEE Trans on Pattern Anal Machine Intell, 1997, 19 ( 7 ) : 711-720.
  • 2JUTTEN C, HERAULT J. Independent component analysis versus PCA[ C] / / Proc of European Signal Processing Conf. 1988: 287-314.
  • 3JUTEN C, HERAULT J. Blind separation of sources, part 1: an adaptive algorithm base on neuromimetic architecture [ J] . Signal Processing, 1991, 24 ( 1) : 1- 10.
  • 4LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[ J] . Nature, 1999 , 401 ( 6755 ) : 788- 791.
  • 5BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[ C] / /Proc of the 5th annual ACM Workshop on Computational Learning Theory. [ S. l. ] : ACM Press, 1992:144-152 .
  • 6SCHOLKOPF B, SMOLA A, ROBERT M K. Nonlinear component analysis as a kernel eigenvalue problem[ J] . Neural Computer, 1998( 10 ) : 1299-1319.
  • 7ZHANG Dao-qiang, ZHOU Zhi-hua, CHEN Song-can. Non-negative matrix factorization on kernels[ C] / /Proc of the 9 th Pacific Rim International Conference on Artificial Intelligence( PRICAI’06 ) . Guilin:[ s. n. ] , 2006 : 404- 412.
  • 8MULLER K R, MIKA S, RATSCH G, et al. An introduction to kernel- based learning algorithms [ J] . IEEE Trans on Neural Networks, 2001, 12 ( 2) : 181 - 201.
  • 9罗公亮.核函数方法(上)[J].冶金自动化,2002,26(3):1-4. 被引量:8
  • 10杜树新,吴铁军.模式识别中的支持向量机方法[J].浙江大学学报(工学版),2003,37(5):521-527. 被引量:118

二级参考文献22

  • 1VAPNIK V N. The nature of statistical learning [M].Berlin:Springer, 1995.
  • 2VAPNIK V N. Statistical learning theory [M]. New York:John Wiley & Sons, 1998.
  • 3SCHōLKOPH B, SMOLA A J, BARTLETT P L. New support vector algorithms[J]. Neural Computation.2000, 12(5):1207--1245.
  • 4SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293--300.
  • 5CHEW H-G, BOGNER R E, LIM C-C, Dual v-support vector machine with error rate and training size beasing[A]. Proceedings of 2001 IEEE Int Conf on Acoustics,Speech, and Signal Processing [C]. Salt Lake City,USA: IEEE, 2001. 1269--1272.
  • 6LIN C-F, WANG S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2):464--471.
  • 7SUYKENS J A K, BRANBANTER J D, LUKAS L, et al. Weighted least squares support vector machines:robustness and spare approximation[J]. Neuroeomputing, 2002, 48(1): 85--105.
  • 8ROOBAERT D. DirectSVM: A fast and simple support vector machine perception [A]. Proceedings of IEEE Signal Processing Society Workshop[C]. Sydney, Australia: IEEE, 2000. 356--365.
  • 9DOMENICONI C. GUNOPULOS D. Incremental support vector machine construction [A]. Proceedings of IEEE Int Conf on Data Mining[C]. San Jose, USA:IEEE,2001. 589--592.
  • 10OSUNA E, FREUND R, GIROSI F. An improved training algorithm for support vector machine [A].Proceedings of 1997 IEEE Workshop on Neural Networks for Signal Processing[C]. Amelea Island, FL:IEEE, 1997. 276--285.

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部