期刊文献+

基于OCML和TD-ERCS混沌系统的图像加密新方案 被引量:3

New image encryption scheme based on OCML and TD-ERCS map
下载PDF
导出
摘要 研究了一个基于时空混沌系统和切延迟椭圆反射腔(TD-ERCS)离散混沌系统的图像加密方案。在该方案中,一类在时间和空间上均具有混沌行为的单向耦合映像格子(OCML)被分别用于图像的置乱和灰度值扩散,同时使用统计性良好的TD-ERCS混沌系统生成两个独立的伪随机序列赋给OCML系统的初值和耦合系数。该方案设计简单,能够实现任意大小图像的加密。数值实验和性能分析证明其具有很高的安全性。 This paper proposed a new image encryption scheme based on OCML and TD-ERCS map. In the proposed scheme, as a basic model of spatiotemporal chaotic system which exhibited chaotic properties both in time and in space, .one-way coupled map lattice was adopted in permutation and the diffusion of gray value. The initial values and coupling coefficients were produced by a TD-ERCS map which had good random properties. The simple designed encryption scheme could work on digital image at any size, while its high security is proved by statistical experiments.
出处 《计算机应用研究》 CSCD 北大核心 2008年第2期518-520,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60672041) 湖南省自然科学基金资助项目(04JJ3077)
关键词 图像加密 单向耦合映像格子 切延迟椭圆及射腔映射系统 混沌密码学 image encryption OCML TD-ERCS cryptography of the chaos
  • 相关文献

参考文献9

二级参考文献33

  • 1周红,凌燮亭.有限精度混沌系统的m序列扰动实现[J].电子学报,1997,25(7):95-97. 被引量:99
  • 2Bender W, Gruhl D, Morimoto N, et al. Techniques for data hiding [J]. IBM Systems Journal, 1996, 35(3-4) :313 ~335.
  • 3Matthews R. On the derivation of a ‘ chaotic ' encryption algorithm [ J ]. Cryptogia, 1989,13 ( 1 ) :29 ~ 42.
  • 4刘向东.[D].沈阳:东北大学,2002:51~52.
  • 5Habutsu T,Nishio Y,Sasase I,et al.A secret key cryptosystem by iterating chaotic map[J].Lect Notes Comput Sci,1991,547: 127-140.
  • 6Tsueike M,Ueta T,Nishio Y.An application of two dimensional chaos cryptosystem[R].Japanses: IEICE,1996.
  • 7Kotulski Z,Szczepanski J.Discrete chaotic cryptography[J].Ann Physik,1997,6(5): 381-394.
  • 8Naoki Masuda,Kazuyuki Aihara.Cryptosystems with discretized chaotic maps[J].IEEE Trans on Circuits and Systems-I: Fundamental Theory and Applications,2002,49(1): 28-40.
  • 9Pichler F,Scharinger J.Finite dimensional generalized Baker dynamical systems for cryptographic applications[J].Lect Notes in Comput Sci,1996,1030: 465-476.
  • 10Kocarev L,Jakimoski G,Stojanovski T,et al.From chaotic maps to encryption schemes[A].Proc IEEE Int Symp ISCAS'98[C].Monterey: IEEE,1998.514-517.

共引文献119

同被引文献37

  • 1盛利元,孙克辉,李传兵.基于切延迟的椭圆反射腔离散混沌系统及其性能研究[J].物理学报,2004,53(9):2871-2876. 被引量:43
  • 2范艺,刘雄英,丘水生.混沌加密与常规加密复合的图像保密通信系统[J].计算机工程,2005,31(20):44-45. 被引量:10
  • 3LIU Chong-xin,LIU Tao,LIU Ling,et al.A new chaotic attractor[J].Chaos,Solitions and Fractals,2004,22(5):1031-1038.
  • 4BAO Bo-cheng,LIU Zhong,YU Jue-bang.Modified generalized Lorenz system and fold chaotic attractors[J].International Journal of Bifurcation and Chaos,2009,19(8):2573-2587.
  • 5LIU Zhong,ZHU Xiao-hua,HU Wen,et al.Principles of chaotic signal radar[J].International Journal of Bifurcation and Chaos,2007,17(5):1735-1739.
  • 6MOHAMMAD S T,MOHAMMAD H.A necessary condition for double scroll attractor existence in fractional-order systems[J].Physics Letters A,2007,367(1-2):102-113.
  • 7SHEU L J,CHEN H K,CHEN J H,et al.Chaos in a new system with fractional order[J].Chaos,Solitions and Fractals,2007,31(5):1203-1212.
  • 8DENG Wei-hua,L(U) Jin-hu.Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system[J].Physics Letters A,2007,369(5-6):438-443.
  • 9SCHMITZ R.Use of Chaotic Dynamical Systems in Cryptography[J].Journal of the Franklin Institute,2001,338(4):429-441.
  • 10ZHANG L H,LIAO X F,WANG X B.An Image Encryption Approach Based on Chaotic Maps[J].Chaos,Solitonsand Fractals,2005,24(3):759-765.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部