期刊文献+

基于NB分类方法的网络异常检测模型 被引量:1

Network anomaly detection model based on nave Bayesian classifier
下载PDF
导出
摘要 在深入研究网络异常行为及异常检测系统相关现状的基础上,提出了基于NB分类方法的网络异常检测模型,并详细论述了该模型的工作原理。实验结果表明该方法是有效的。 This paper discussed the abnormal behavior in network and the recently technologies on network anomaly detection. Moreover, presented network anomaly detection model based on naive Bayesian classifier and described the working principle of the model in detail. Finally, experimental results show this method is effective.
出处 《计算机应用研究》 CSCD 北大核心 2008年第2期569-571,共3页 Application Research of Computers
基金 国家"863"计划资助项目(2003AA115230)
关键词 网络异常检测 朴素贝叶斯网络 贝叶斯分类方法 network anomaly detection naive Bayesian network Bayesian classifier
  • 相关文献

参考文献15

  • 1GAVALAS D, GREENWOOD D, GHANBARI M, Advanced network monitoring applications based on mobile/intelligent agent technology [J], Computer Communications, 2002, 34 (23):720-730
  • 2TAGLIAFERRI R, ELEUTERI A, MENEGANTI M, et al. Fuzzy min-max neural network : from classification to regression [ J ]. Soft Computing, 2001, 43 (5) :69-76.
  • 3BASSEVILLE M, NIKIFOROV I V. Detection of abrupt changes: theory and application [ M]. New York:Prentice Hall, 1993.
  • 4ISERMAN R. Process fault detection based on modeling and estimation and knowledge processing [ J ]. Automatic, 1999, 29 ( 4 ) : 815- 835.
  • 5BULLELL P, INMAN D, An expert system for the analysis of faults in an electricity supply network: problems and achievements [ J ], Computer in Industry, 1998, 24 (37) :113-123.
  • 6SIRAJ A, BRIDGES S M,VAUGHN R B. Fuzzy cognitive maps for decision support in an intelligent intrusion system [ C ]//Proc of ISFA World Congress and the 20th NAFIPS International Conference. 2001 : 2165-2170.
  • 7GURER D, KHAN I, OGIER R,et al. An artificial intelligence approach to network fault management [ EB/OL]. (2003-02-01). http ://citeseer. nj. nec. com/105695. html.
  • 8RUSSELL P N S. Artificial intelligence: a modern approach[ M]. New Jersey: Prentice Hall, 1995.
  • 9FORREST S, PERRELASON A S, ALLEN L, et al. Self_nonself discrimination in a computer[ C ]//Proc of IEEE Symposium on Research in Security and Privacy. Oakland: IEEE Computer Society, 1994:202-212.
  • 10GHOSH A K, MICHAEL C, SCHATZ M. A real-time intrusion detection system based on learning program behavior[ C ]//Proc of Recent Advances in Intrusion Detection. Toulouse: Spinger-Verlag, 2000:93-109.

同被引文献13

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2俞承志,王淑静,宋瀚涛.基于MIB-Ⅱ的网络安全入侵检测策略[J].北京理工大学学报,2004,24(8):696-700. 被引量:4
  • 3Gavalas D, Greenwood D, Ghanbari M, et al. Ad-vanced network monitoring applications based on mobile/intelligent agent technoloy [J]. Computer Communications, 2002,23 (8) : 720-730.
  • 4Tagliaferri R, Eleuteri A, Meneganti M, et al. Fuzzy rain-max neural network.- from classification to re gression[J]. Soft Computing,2001,5(1) : 69-76.
  • 5Basseville M, Nikiforov I V. Detection of abrupt changes: theory and application [M]. New York: Prentice Hall, 1993 : 350-412.
  • 6Simmross-Wattenberg F,Juan I A. Anomaly detection in network traffic based on statistical inference and al- pha-stable modeling[J]. IEEE Transactions on De pendable and Secure Computing,2011,8(4): 494-509.
  • 7Lakhina A, Crovella M, Diot C. Diagnosing net- work-wide traffic anomalies [C] // Proceedings of the ACM SIGCOMM. Portland, Oregon, USA: ACM, 2004 : 219-230.
  • 8Limthong K. Real-time computer network anomaly detection using machine learning techniques[J]. Journal of Advances in Computer Networks, 2013 (1) : 1-5.
  • 9曹敏,程东年,张建辉,吴曦.基于自适应阈值的网络流量异常检测算法[J].计算机工程,2009,35(19):164-166. 被引量:24
  • 10魏小涛,黄厚宽,田盛丰.在线自适应网络异常检测系统模型与算法[J].计算机研究与发展,2010,47(3):485-492. 被引量:10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部