摘要
该文提出一种支撑向量回归机AEPSVR。它首先用ε-SVR求得一个近似的支撑向量回归函数,在此基础上,引入一种新自适应误差惩罚函数,通过迭代,得到鲁棒的支撑向量回归机。该方法因以ε-SVR为基础,故可以应用各种求解SVR的优化算法。实验表明,该支撑向量回归机AEPSVR能显著地降低离群点的影响,具有良好的泛化性能。
A novel support vector regression method AEPSVR is proposed in this paper. First, an approximate regression function is obtained using ε-SVR method, and then a new adaptive error penalization function is introduced to enhance the robust performance of SVR such that a robust support vector regression is derived. Because the proposed AEPSVR here is based on ε-SVR, so various optimization methods for SVR can be used. Experimental results show that the proposed AEPSVR can reduce the affect of outliers, and have the very good generalization capability.
出处
《电子与信息学报》
EI
CSCD
北大核心
2008年第2期367-370,共4页
Journal of Electronics & Information Technology
基金
2004年教育部优秀人才支持计划(NCET-04-0496)
模式识别国家重点实验室开放课题
南京大学软件新技术国家重点实验室开放课题
教育部重点科学研究项目(105087)
国防应用基础研究基金项目(A1420061266)
关键词
支撑向量回归
离群点
自适应误差惩罚
Support Vector Regression (SVR)
Outlier
Adaptive Error Penalization (AEP)