期刊文献+

自适应误差惩罚支撑向量回归机 被引量:2

SVR with Adaptive Error Penalization
下载PDF
导出
摘要 该文提出一种支撑向量回归机AEPSVR。它首先用ε-SVR求得一个近似的支撑向量回归函数,在此基础上,引入一种新自适应误差惩罚函数,通过迭代,得到鲁棒的支撑向量回归机。该方法因以ε-SVR为基础,故可以应用各种求解SVR的优化算法。实验表明,该支撑向量回归机AEPSVR能显著地降低离群点的影响,具有良好的泛化性能。 A novel support vector regression method AEPSVR is proposed in this paper. First, an approximate regression function is obtained using ε-SVR method, and then a new adaptive error penalization function is introduced to enhance the robust performance of SVR such that a robust support vector regression is derived. Because the proposed AEPSVR here is based on ε-SVR, so various optimization methods for SVR can be used. Experimental results show that the proposed AEPSVR can reduce the affect of outliers, and have the very good generalization capability.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第2期367-370,共4页 Journal of Electronics & Information Technology
基金 2004年教育部优秀人才支持计划(NCET-04-0496) 模式识别国家重点实验室开放课题 南京大学软件新技术国家重点实验室开放课题 教育部重点科学研究项目(105087) 国防应用基础研究基金项目(A1420061266)
关键词 支撑向量回归 离群点 自适应误差惩罚 Support Vector Regression (SVR) Outlier Adaptive Error Penalization (AEP)
  • 相关文献

参考文献12

  • 1Smola A J and Scholkopf B. A tutorial on support vector regression. Statistics and Computing, 2004, 14(3): 199-222.
  • 2Scholkopf B, Smola A J and Williamson R C, et al.. New support vector algorithm. Neural Computation, 2000, 12(12): 1207-1245.
  • 3Song Q, Hu W, and Xie W. Robust support vector machine with bullet hole image classification. IEEE Trans. on Systemsl Man and Cybernetics C, 2002, 32(4): 440-448.
  • 4Weston J and Herbrich R. Adaptive margin support vector machines. Neural Information Processing Systems (NIPS) Conference Workshop on Advance in Large Margin Classifiers, Breckenridge Colorado USA, 1998: 281-296.
  • 5Xu Linli, Crammer K, and Schuurmans D. Robust support vector machine training via convex outlier ablation. In Proceedings of the 21st National Conference on Artificial Intelligence(AAAI-06), Boston USA, 2006: 536-546.
  • 6Zhan Yiqiang and Shen Dinggang. An adaptive error penalization method for training an efficient and generalized SVM. Pattern Recognition, 2006, 39(3): 342-350,
  • 7张讲社,郭高.加权稳健支撑向量回归方法[J].计算机学报,2005,28(7):1171-1177. 被引量:13
  • 8Suykens J A K, De Brahanter J, Lukas L, and Vandewalle J. Weighted least squares support vector machine: robustness and sparse approximation. Neurocomputing, 2002, 48(1-4): 85-105.
  • 9Chuang C C, Su F F, Jeng J T, and Hsiao C C. Robust support regression networks for function approximation with outliers. IEEE Trans. on Neural Networks, 2002, 13(6): 1322-1330.
  • 10Yong Zhan and HaoZhong Cheng. A robust support vector algorithm for harmonic and interharmonic analysis of electric power system. Electric Power Systems Research, 2005, 73(3): 393-400.

二级参考文献7

  • 1张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Duan K., Keerthi S.S., Poo A.N.. Evaluation of simple performance measures for tunning SVM hyperparameters. National University of Singapore, Singapore: Technical Report CD-01-11, 2001
  • 3Suykens J.A.K., de Brabanter J., Lukas L., Vandewalle J.. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing, 2002, 48(1~4): 85~105
  • 4Chuang C.-C., Su F.-F., Jeng J.-T., Hsiao C.-C.. Robust support vector regression networks for function approximation with outliers. IEEE Transactions on Neural Networks, 2002, 13(6): 1322~1330
  • 5Platt J.C.. Fast training of support vector machines using sequential optimization. In: Scholkopf B., Burges C., Smola A. eds. Advances in Kernel Methods: Support Vector Machines. Cambridge, MA: MIT Press, 1998, 185~208
  • 6Shevade S.K., Keerthi S.S., Bhattacharyya C., Murthy K.R.K.. Improvements to SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 2000, 11(5): 1188~1193
  • 7Smola A., Scholkopf B.. A tutorial on support vector regression. Royal Holloway College, London, U.K.: Neuro COLT Technical Report TR-1998-030, 1998

共引文献12

同被引文献24

  • 1张讲社,郭高.加权稳健支撑向量回归方法[J].计算机学报,2005,28(7):1171-1177. 被引量:13
  • 2Smola A J, Scholkopf B. A tutorial on support vector regression [ J]. Statistics and Computing, 2004, 14 (3) : 199-222.
  • 3Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithm [J]. Neural Computation, 2000, 12(12) : 1207-1245.
  • 4Song Q, Hu W, Xie W. Robust support vector machine with bullet hole image classification [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 2002, 32(4):440-448.
  • 5Weston J, Herbrich R. Adaptive margin support vector machines [ A]. In: Smola A J, Bartlett P, Sch~lkopf B, et al. eds: Advances in Large Margin Classifiers[ C ], Cambridge, MA, USA: MIT Press, 2000 : 281-295.
  • 6Xu Lin-li, Crammer K, Schuurmans D. Robust support vector machine training via convex outlier ablation [ A ]. In : Proceedings of the 21 st National Conference on Artificial Intelligence [ C ] , Boston, Massachusetts, USA, 2006: 536-546.
  • 7Zhan Yi-qiang, Shen Ding-gang. An adaptive error penalization method for training an efficient and generalized SVM [ J] . Pattern Recognition, 2006, 39(3) : 342-350.
  • 8Suykens J A K, De Brahanter J, Lukas L, et al. Weighted least squares support vector machine: robustness and sparse approximation [J]. Neurocomputing, 2002, 48(1-4) : 85-105.
  • 9Chuang C C, Su F F, Jeng J T, et al. Robust support regression networks for function approximation with outliers [ J ] . IEEE Transactions on Neural Networks, 2002, 13 (6) : 1322-1330.
  • 10Zhan Yong, Cheng Hao-zhong. A robust support vector algorithm for harmonic and interharmonic analysis of electric power system [J].Electric Power Systems Research, 2005, 73 (3) : 393-400.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部