期刊文献+

生物医用Ti-16Nb-4Sn合金的超弹性和形状记忆效应 被引量:3

Superelasticity and Shape Memory Effect of Ti-16Nb-4Sn Biomedical Alloy
下载PDF
导出
摘要 通过室温下拉伸及弯曲试验,研究了淬火温度以及循环拉伸对Ti-16Nb-4Sn(at%)合金的超弹性和形状记忆效应的影响。发现锻造态合金在室温变形后具有接近完全的超弹性。700℃冰水淬火的合金具有最好的形状记忆效应,室温变形后在150℃加热,形状回复率可达21.1%,但超弹性却最低。超弹性和形状记忆效应具有互补性。循环拉伸可以明显改善合金的超弹性。对于锻造态和经400℃冰水淬火的合金,通过4%应变量循环拉伸3次后均可获得完全的超弹性。XRD分析结果表明,室温下合金的组织为β+α″马氏体。 The influences of quenching temperature and cyclic tension on superelasticity and shape memory effect of Ti-16Nb-4Sn (at%) alloy were investigated by tensile test and bending test at room temperature. The results show that the as-forged alloy almost exhibits complete superelasticity after deformation at room temperature. The alloy quenched at 700 ℃ shows the best shape memory effect. The shape recovery ratio is up to 21.1% and has the lowest superelasticity when heated to 150 ℃ after deformation at room temperature. The superelasticity and shape memory effect are complementary. Cyclic tensile test can evidently improve the superelasticity of the alloy. Complete superelasticity of the as-forged alloy and the alloy quenched at 400℃ was obtained at the third circle tension under the strain of 4%. X-ray diffraction (XRD) experiment shows that the microstructure of the alloy is β+α"martensite at room temperature.
出处 《热加工工艺》 CSCD 北大核心 2008年第2期9-12,共4页 Hot Working Technology
基金 福州大学科技发展基金资助项目(2004-XQ-02)
关键词 Ti-Nb-Sn合金 超弹性 形状记忆效应 马氏体相变 淬火 Ti-Nb-Sn alloy superelasticity shape memory effect martensitic transformation quenching
  • 相关文献

参考文献10

  • 1Kim J I,Kim H Y,Hosoda H,et al. Shape memory behavior of Ti-22 Nb-(0.5-2.0)O(at%) biomedical alloys [J]. Materials Transactions, 2005,46 (4) :852-857.
  • 2Zheng Y F, Wang B L, Wang J G, el al. Corrosion behaviour of Ti-Nb-Sn shape memory alloys in different simulated body solutions [J]. Materials Science and Engineering,2006,A 438-440: 891-895.
  • 3Sakaguchi R, Niinomi M, Akahori T, el al. Relationships between tensile deformation behavior and microstructure in Ti-NbTa-Zr systerm alloys [J]. Materials Science and Engineering, 2005,C25 : 363-369.
  • 4Baker C. The shape-memory effort in a titanium-35 wt%Ni obium alloy[J]. Metal Sci. J., 1971,5:92-100.
  • 5Duerig T W, Albrecht J,Richter D,et al. Formation and reversion of stress in duced martensite in Ti-10V-3Al [J]. Acta. Metall., 1982,30 (12):2161-2173.
  • 6Hao Y L, Li S J, Sun S Y, et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys [J]. Materials Science and Engineering,2006, A441:112-118.
  • 7杨军,李宁,文玉华,王杉华.热处理对Fe17Mn5Si8Cr5Ni形状记忆合金回复应力的影响[J].热加工工艺,2005,34(10):53-54. 被引量:3
  • 8Kim J I, Kim H Y, Hosoda H, et al. Shape memory characteristics of Ti-22Nb-(2-8)Zr(at%) biomedical alloys[J]. Materials Science and Engineering, 2005, A40(3): 334-339.
  • 9Takahashi E, Sakurai T, Watanabe S, et al. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys[J]. Materials Transactions, 2002,43(12): 2978-2983.
  • 10戚正风.金属热处理原理[M].北京:机械工业出版社,2001.107-109.

二级参考文献7

  • 1Kajiwara S. Characteristic feature of shape memory effect and related transformation behavior in Fe-based alloys [J]. Materials Science and EngineeringA, 1999,273~275:67-68.
  • 2Duering T W. Application ofshape memory [J]. Materials Science Forum,1990,156-158: 679-692.
  • 3Tsuzaki T, Natsume Y, Tomota Y, et al. Effect of solution hardening on the shape memory effect of Fe-Mn base alloys [J]. Scripta Metall and Mater, 1995,33(7): 1087-1092.
  • 4Cengiz T,Fahrettin Y.The effect of pressure on transformation temperatures and some physical parameters of Fe-32Mn-6Si-3Cr shape memory alloy[J]. ThermochimicaActa,2005(430):129-133.
  • 5徐京娟 邓志煜 张同俊.金属物理性能[M].上海:上海科技出版社,1988.101-105.
  • 6杨德庄.位错与金属强化机制[M].哈尔滨:哈尔滨工业大学出版社,1990,12.191-192.
  • 7周丽花,戴品强,吴紫丹,曾敬远.淬火温度对Fe-Mn-Si-Cr-Ni记忆合金形状记忆效应的影响[J].金属功能材料,2003,10(6):5-9. 被引量:2

共引文献3

同被引文献34

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部