期刊文献+

关于π有理逼近的注记 被引量:2

On Rational Approximation to π
下载PDF
导出
摘要 利用π的连分数展开式π=[3,12∶6,32∶6,52∶6,…]=[3,(2n-1)2∶6]n∞=1研究关于π有理逼近的下界估计. In this paper, lower bound of rational approximations to π is discussed by its continued fraction expansion π=[3,12:6,3^2:6,5^2:6,…]=[3,(2n-1)^2:6]n^∞=1
作者 王莉 于秀源
出处 《杭州师范学院学报(自然科学版)》 2008年第1期9-11,共3页 Journal of Hangzhou Teachers College(Natural Science)
基金 国家自然科学基金资助项目(10671051)
关键词 π有理逼近 连分数 下界估计 π rational approximation continued fraction evaluation of lower bound
  • 相关文献

参考文献6

  • 1[1]Van der Poorten A J.Schneider's continued fraction[EB/OL].[2007-03-01].http://www-centre.ics.mq.edu.au/alfpapers/a101.paf.
  • 2[2]Horst A.On rational approximation to e[J].Journal of Number Theory,1998,68:57-62.
  • 3[3]Okano T.A note on the rational approximation to e[J].Tokyo J.Math.,1992,15:129-133.
  • 4[4]Okano T.A note on the rational approximation to e1/k[J].Tokyo J.Math.,1994,17:291-294.
  • 5[5]Okano T.A note on the rational approximation to tan 1/k[J].Tokyo J.Math.,1995,18:75-80.
  • 6[6]Lange L J.An elegant continued fraction for π[J].Amer.Math.Monthly,1999,106:456-458.

同被引文献12

  • 1华罗庚.数论导引[M].北京:科学出版社,1962..
  • 2Baker A,Wustholz G.Logatithmic forms and group varieties[J].J Reine Angew Math,1993,442:19-62.
  • 3Baker A.The theory of linear forms in the logarithms.Diophantine approximations and its applications[M].New York:Academics Press,1973:1-23.
  • 4Baker A.Transcendental number theory[M].Cambridge:Cambridge University Press,1979.
  • 5Zhu Yaochen.The algebraic independence of certain transcendental continued fractions[J].Acta Math Sinica NS,1991,7(2):127-134.
  • 6Yu Xiuyuan.A theorem on the transcendence and its applications[J].Science in China(A),1997,40(8):826-831.
  • 7Diophantine.Approximations,diophantine equations,transcendence and applications[J].Indian Jour of Pure and Applied Math,2006,37:9-39.
  • 8HardyG H, Wright E M. An introduction to the theory of numbers[M]. London: Oxford University Press,1981:.
  • 9Gutting R. Polynomials with multiple zeros[J]. Mathematika, 1967,14:181-196.
  • 10华罗庚.数论导引[M].北京:科学出版社.1986.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部