一类CH-γ方程不光滑孤立波解的轨道稳定性
Orbital Stability of Peakons for a Class of CHγ Equation
摘要
研究一类CH-γ方程不光滑孤立波解的轨道稳定性问题。通过细致的谱分析和计算,证明了所研究方程的一族显式不光滑孤立波解是轨道稳定的。
Orbital stability of peakons for a class of CH-γ equation is investigated. By detailed spectral analysis and computation, the authors proved that a family of explicit peakons is orbitally stable.
出处
《装甲兵工程学院学报》
2007年第6期78-80,共3页
Journal of Academy of Armored Force Engineering
关键词
孤立波
轨道稳定
谱分析
solitary wave
orbital stability
spectral analysis
参考文献6
-
1[1]Guo B L,Liu Z R.Peaked Wave Solutions of CH-γ Equation[J].Sci China (Ser A),2003,33(4):325-327.
-
2[2]Qian T,Tang M.Peakons and Periodic Cusp Waves in a Generalized Camassa-Holm Equation[J].Chaos,Solitons and Fractals,2001,12:1347-1360.
-
3赵烨,崔丽威.广义Camassa-Holm方程孤立波解的轨道稳定性[J].内蒙古大学学报(自然科学版),2007,38(5):490-493. 被引量:2
-
4[4]Constantin A,Escher J.Global Existence and Blow-up for a Shallow Water Equation[J].Annali Sc Norm Sup Pisa,1998,26:303-328.
-
5[5]Li Y,Olver P.Well-posedness and Blow-up Solutions for an Integrable Nonlinearly Dispersive Model Wave Equation[J].J Diff Eq,2000,162:27-63.
-
6[6]Dunford N,Schwartz J T.Linear Operators[M].New York:Wiley,1988:78-88.
二级参考文献8
-
1Grillakis M,Statah J,Strauss W.Stability theory of solitary waves in the presence of symmetry[J].I.J.Functional Analysis,1987,74:160-197.
-
2Constantin A,Strass W A.Stability of the Camassa-Holm solitions[J].J.Nonlinear Sci,2002,12:415-422.
-
3Qian T,Tang M.Peakons and periodic cusp waves in a generalized Camassa-Holm equation[J].Chaos,Solitons and Fractals,2001,12:1347-1360.
-
4Adrian Constantin,Luc Molinet.Orbital stability of solitary waves for a shallow water equation[J].Physic D,2001,157:75-89.
-
5Dunford N,Schwartz J T.Linear operators[M].Wiley,New York,1998.
-
6Constantin A,Escher J.Global existence and blow-up for a shallow water equation[J].Annali Sc.Norm.Sup.Pisa,1998,26:303-328.
-
7Li Y,Olver P.Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation[J].J.Diff.Eq.2000,162:27-63.
-
8Hakkaev,Sevdzhan,Kirchev,Kivil.Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa-Holm equation[J].Commun.Partial Differ.Equations,2005,30(5-6):761-781.
-
1刘法贵,王艳红.CH-γ方程的精确解[J].黑龙江大学自然科学学报,2010,27(2):147-150. 被引量:2
-
2马芙玲.CH-γ方程精确参数解的新探讨[J].苏州市职业大学学报,2015,26(2):44-50. 被引量:1
-
3陈春丽,李翊神,张近.CH-γ方程的多孤子解[J].中国科学(A辑),2007,37(11):1361-1367.
-
4动力系统[J].中国学术期刊文摘,2005,11(23):3-3.
-
5康周正.CH-γ方程的对称和守恒律[J].河南师范大学学报(自然科学版),2012,40(6):26-29.
-
6王丽芳.CH-γ方程的新的孤立尖波解[J].淮阴师范学院学报(自然科学版),2013,12(4):287-292.
-
7郭柏灵,刘正荣.CH-γ方程的两类新有界波[J].中国科学(A辑),2005,35(6):651-663. 被引量:6