期刊文献+

一种新的广义凸多目标分式规划的对偶定理

Duality theorems for multi-objective fractional programming with a new formulation of generalized convexity
下载PDF
导出
摘要 本文给出了一类新的广义凸函数-(F,α,ρ,θ)-b-凸函数,讨论了多目标分式规划(MFP)的三种对偶模型:Mond-Weir型对偶、Lagrange型对偶、Schaible型对偶,并基于(F,α,ρ,θ)-b-凸性证明了各自相应的弱、强对偶定理。 In this paper,we present a new formulation of generalized convex function(F,α,ρ,θ)-b-convex function.Then three duality types of(MFP) which are Mond-Weir type,Lagrange type and Schaible type are discussed.At the same time,the weak duality theorems and strong duality theorems are proved for the three types of duality respectively based on the(F,α,ρ,θ)-b-convexity.
机构地区 南昌航空大学
出处 《南昌航空大学学报(自然科学版)》 CAS 2007年第3期24-31,共8页 Journal of Nanchang Hangkong University(Natural Sciences)
关键词 多目标分式规划 广义凸函数 对偶定理 multi-objective fractional programming generalized convex functions duality theorem
  • 相关文献

参考文献13

  • 1[1]Hanson.M.A.On Sufficiency of Kuhn-Tucker Conditions[J].Mathematical Analysis And Applieations.1981(80):545-550
  • 2[2]Craven.B.D.Invex functions and constrained local Minima[J].Bull.Austarl.Mathematical Society.1981(24):357-366
  • 3[3]Bector.C.R,Singh.C.B-vex functions[J].Optim.Theory Appl.1991(71):237-253
  • 4[4]Bector.C.R,Suneja.S.K,Lalitha.C.S.Generalized B-vex functions and generalized B-vex programming[J].Journal of optimization theory and applications:Vol.76,No.3.March.1993:561-576
  • 5[5]Hanson.M.A,Mond.B.Furhter generalization of convexity in mathematical programming[J].Infor.Option.Sci.1982(3):22-35.
  • 6[6]Jeyakumar.V.Strong and weak invexity in mathematical programming[J].Meth.Oper.Res 1985(55):109-125.
  • 7[7]Vital.J.P.Strong and weak convexity of sets andfunctions[J].Math.Oper.Res.1983(8):231-259.
  • 8[8]Preda.V.On efficiency and dualty for muhiobjective programs[J].JMAA.1992(166):365-377
  • 9[9]Tadeusz Antczak.A New Approach to Multiobjective Programming with a Modified Objective Function[J].Journal of Gldal Optimization 2003(27):485-495
  • 10[10]Liang Z.A,Huang H.X and Pardalos P.M.Optimality conditions and duality for a nolinear fractional programming problems[J].Opai.Theo.Appl.2001,(110):611-619.

二级参考文献8

  • 1Liang Z A,Huang H X,Pardalos P M.Optimality conditions and duality for a class of nonlinear fractional programming problems[J].JOTA,2001,110(3):611-619.
  • 2Preta V.On efficiency and duality for multiobjective programs[J].Journal of Mathematical Analysis and Applications,1992,166(2):356-377.
  • 3Mangasarin Q L.Nonlinear Programming[M].New York:McGraw Hill,1969.
  • 4Dinkelbach W.On nonlinear fractional programming[J].Managent Sci,1967,13:492-498.
  • 5Khan Z A,Hansn M A.On ratio invexity in mathematical,programming[J].Journal of Mathematical Analysis and Applications,1997,205(2):330-336.
  • 6Reddy L V,Mukherjee R N.Some results on mathematical programming with generalized ratio invexity[J].Journal of Mathematical Analysis and Applications,1999,240(2):299-310.
  • 7张江涛,刘三阳,黄荷姣.非凸异分母分式多目标规划解的充分条件及对偶定理[J].应用数学,1998,11(4):43-48. 被引量:2
  • 8胡毓达,张峰.多目标分式规划的两种新对偶形式[J].应用数学学报,1991,14(1):128-135. 被引量:3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部