摘要
On the basis of a nonhydrostatic numerical model, the interaction of internal solitary wave with slope - shelf was studied. The breaking and polarity transformation were analyzed. A "kink" structure, due to shoaling topography and higher nonlinear effect, was found to be generated by the leading wave before breaking. Coherent vortex shedding behind the leading wave was presented. The evolution characteristics of the modal structure were analyzed based on the empirical orthogonal function method. The modal structure was complicated due to the effect of the variable topography, especially when breaking occurred. In the performed experiments, the contributions to the total variance from higher mode jumped from no more than 20% to over 40%.
On the basis of a nonhydrostatic numerical model, the interaction of internal solitary wave with slope - shelf was studied. The breaking and polarity transformation were analyzed. A "kink" structure, due to shoaling topography and higher nonlinear effect, was found to be generated by the leading wave before breaking. Coherent vortex shedding behind the leading wave was presented. The evolution characteristics of the modal structure were analyzed based on the empirical orthogonal function method. The modal structure was complicated due to the effect of the variable topography, especially when breaking occurred. In the performed experiments, the contributions to the total variance from higher mode jumped from no more than 20% to over 40%.
基金
This project was supported by the National Natural Science Foundation of China under contract No. 40576010.