摘要
应用基于正则化方法的反问题求解方法—最佳摄动量法,讨论了双曲型方程分段函数的参数识别问题,并将其归为算子理论的最优化求解问题,给出了程序实现。计算结果表明此方法具有精度高,收敛性好等优点。
For the inverse problem of parameter of subjected function identified of hyperbolic equation, the paper introduced the best-disturbed iteration numerical method that based on the regularization method, and transformed the inverse problem to the optimized problem of operator theory, and gave the process implement. The outcome indicated that the best-disturbed iteration numerical method has advancements such as high precisin and good convergence etc.
出处
《河北理工大学学报(自然科学版)》
CAS
2007年第3期105-109,共5页
Journal of Hebei Polytechnic University:Social Science Edition
基金
河北理工大学科学基金资助项目(Z200718)
关键词
双曲型
反问题
最佳摄动量法
hyperbolic equation
inverse problem
the best disturbed iteration