期刊文献+

双曲型方程参数识别反问题的解法 被引量:2

Numerical Method for the Inverse problem of Parameter Identified of Hyperbolic
下载PDF
导出
摘要 应用基于正则化方法的反问题求解方法—最佳摄动量法,讨论了双曲型方程分段函数的参数识别问题,并将其归为算子理论的最优化求解问题,给出了程序实现。计算结果表明此方法具有精度高,收敛性好等优点。 For the inverse problem of parameter of subjected function identified of hyperbolic equation, the paper introduced the best-disturbed iteration numerical method that based on the regularization method, and transformed the inverse problem to the optimized problem of operator theory, and gave the process implement. The outcome indicated that the best-disturbed iteration numerical method has advancements such as high precisin and good convergence etc.
作者 彭亚绵
出处 《河北理工大学学报(自然科学版)》 CAS 2007年第3期105-109,共5页 Journal of Hebei Polytechnic University:Social Science Edition
基金 河北理工大学科学基金资助项目(Z200718)
关键词 双曲型 反问题 最佳摄动量法 hyperbolic equation inverse problem the best disturbed iteration
  • 相关文献

参考文献1

二级参考文献1

  • 1郭宝琦,哈尔滨工业大学学报,1988年,2期,1页

共引文献1

同被引文献18

  • 1吴建成 张大力 刘家琦.一维波动方程反问题求解的正则化方法.计算物理,1995,12(3):415-420.
  • 2Tikhonov A N, Arsenin V Y. Solution o Ill-posed Problems[M]. New York: John Wiley and Sons, 1977.
  • 3ganerjee A, Abu-Mahfouz I. Evolutionary algo rithn> based parameter identification for non linear dynamical systems [C]//IEEE Congress on Evolutio mry (7ore putatiorn(CEC 2011 ). Washington, D C: 1EEE, 2011:1 5.
  • 4Mariani V C, Neekel V J, Afonso I. D, etal. Differ ential evolution with dynamic adaptation of mutation factor applied to inverse heat transfer problem [C]// IEEE Congress on Evolutionary Computation (CEC 2010). Washington, D C.. IEEE, 2010.. 1-6.
  • 5Wang J, Wu Z J, Wang H, et al. A novel particle swarm algorithm for solving parameter identification problems on graphics hardware [J]. International Journal of Computational Science and Engineering, 2011, 4(1): 43-51.
  • 6Danciu D. Numerics for hyperbolic partial differential equations (PDE) via cellular neural networks (CNN) [C]//2013 2nd International Conference on', Systems and Computer Science (ICSCS). Washington, D C: IEEE, 2013: 183-188.
  • 7Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optim-ization over continu- ous space [J]. Journal of Global Optimization, 1997, 11: 341-359.
  • 8Rudin L I, Stanley O, Emad F. Onlinear total varia- tion based noise removal algorithms[J]. Physical D Nonlinear Phenomena, 1992,60(1) ..259-268.
  • 9Tizhoosh H R. Opposition-based learning.. A new scheme for machine intelligence [C]//Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA- IAWTIC'05). Washington, D C: IEEE, 2005: 695- 701.
  • 10Rahnamayan S, Tizhoosh H R, Salama M M A. Oppo- sition-based differential evolution algo-rithms [C]// IEEE Congress on Evolutionary Computation ( CEC 2006). Washington D C: IEEE, 2006: 2010-2017.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部