摘要
对一维二阶双曲型方程2u/t2=C2 2u/x2,构造了一个双参数三层差分格式,并讨论了它的稳定性与收敛性.当参数适当选取时,其局部截断误差阶可达O(τ4+h4)或O(τ6+h6),且其稳定性条件为r=Cτ/h≤1或r=1.
Abstract: Three -level difference schemes with two parameters are presented for solving the equation of one - dimensional and second - order hyperbolic typeδ^2u/δt^2=C^2δ^2u/δx^2and their stability and convergence property are discussed. The order of the local discretization are O(τ^4+h^4) or O(τ^6+h^6) with choice apropos parameters, and the stability conditions arer=Cτ-/h≤1 or r = 1.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第1期33-36,46,共5页
Journal of Fuzhou University(Natural Science Edition)
基金
国务院侨务办公室科研基金资助项目(04QZR09)
关键词
二阶双曲型方程
双参数
三层差分格式
稳定性
收敛性
second - order hyperbolic equation
two parameters
three - level difference scheme
stability
convergence