期刊文献+

等离子体射流在磁场作用下的特性模拟 被引量:5

Numerical Simulation on the Characteristics of Corona Jet Across Transverse Magnetic Field
下载PDF
导出
摘要 磁流体发电是一种高效、低污染的发电技术。相对于其他发电方式,磁流体发电具有输出功率大、结构紧凑的优点,在高功率电源应用领域有不可替代的性能优势。文中提出采用非平衡等离子体射流的方式产生等离子体,进行磁流体发电的设想。通过数值模拟研究了等离子体射流在横向磁场作用下的特性,并通过试验对模型计算结果进行了验证。模拟研究说明横向磁场对等离子体射流有阻滞作用,在没有外电流回路的情况下,射流气体的动能转化为热,随外加磁场强度的增加,阻滞作用越强,速度减慢越明显;等离子体射流在磁场作用下电流密度主要集中在射流出口附近,并随着外加磁场强度增大而增大。 Magneto-hydrodynamic (MHD) power generation is a kind of technology with high efficiency and low pollution. Authors present that the non-equilibrium gas discharge technology can be used to produce low-temperature plasma which can be applied in MHD power generation. The characteristics of corona jet across transverse magnetic field have been studied by numerical simulation, and the results were validated by experiments. The when corona jet passes through present research indicates that the transverse magnetic field, it would be resisted as a result of the electromagnetic induction phenomenon; when there is no external circuit, the kinetic energy of the corona jet converts into Joule thermal energy; with the increment of the magnetic flux density, the corona jet is resisted and its velocity slower intensively; the current density produced by the corona jet across the transverse magnetic field mostly concentrates around the spout, and which increases with the increment of magnetic flux density.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第5期108-112,共5页 Proceedings of the CSEE
关键词 等离子体射流 磁流体:能量转换 数值模拟 corona jet magneto-hydrodynamic energy conversion numerical simulation
  • 相关文献

参考文献17

  • 1RosaRJ. Magnetohydrodynamicenergyconversion[M]. NewYork: McGarw Hill Book Company, 1968.
  • 2张河,方光耀,赖玉珠.短时间、大功率磁流体发电[J].兵工学报,1994,15(1):72-76. 被引量:4
  • 3Wang Ying, Yah Ping, Xue Haizhong, et al. A pulsed magnetohydrodynamic generator for electric launcher[J]. IEEE Transactions on Magnetics, 2005, 41(1): 334-337.
  • 4Rosa R J, Krueger C H, Shioda S. Plasmas in MHD power generation[J]. IEEE Transactions on Plasma Science, 1991, 19(6): 1180-1190.
  • 5Kayukawa N. Open-cycle magnetohydrodynamic electrical power generation: a review and future perspectives[J]. Progress in Energy and Combustion Science, 2004, 30(1): 33-60.
  • 6ERC Incorporated Tullahoma Operations office. Design study - rocket based MHD generator[R]. Marshall Space Flight Center, AL, 1997.
  • 7Cole J, Campbell J, Robertson A. Rocket-induced MIlD ejector - a single-stage-to-orbit advanced propulsion concept[C]. Space Programs and Technologies Conference, Huntsville, AL. 1995.
  • 8Bitvurin VA, Zeigarnik VA, Kuranov AL. On a perspective of MHD technology in aerospace applications[C]. Plasmadynamics and Lasers 27th Conference, New Orleans, LA, 1996.
  • 9Wilbur P J, Jahn R G, Curran F C. Space electric propulsion plasmas [J]. IEEE Transactions on Plasma Science, 1991, 19(6): 1167-1179.
  • 10Satyanand U S, Panicker P K, Lu F K, et al. Preliminary study of ionization of supersonic air by means of corona discharge [C]. 12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, Virginia, 2003.

二级参考文献38

  • 1刘洪武,陈德桂,李志鹏.不同因素对气吹式塑壳断路器开断电弧运动影响的实验研究[J].中国电机工程学报,2004,24(11):154-159. 被引量:31
  • 2李兴文,陈德桂,汪倩,李志鹏.Simulation of the Effects of Several Factors on Arc Plasma Behavior in Low Voltage Circuit Breaker[J].Plasma Science and Technology,2005,7(5):3069-3072. 被引量:7
  • 3吴翊,荣命哲,杨茜,胡光霞.低压空气电弧动态特性仿真及分析[J].中国电机工程学报,2005,25(21):143-148. 被引量:61
  • 4匿名著者,日本科技信息,1991年,专辑1期,20页
  • 5Rachard H, Chévrier P, Henry D et al. Numerical study of coupled electromagnetic and aerothermodynamic phenomena in a circuit breaker electric arc[J]. International Journal of Heat and Mass Transfer, 1999,42(9): 1723-1734.
  • 6Zheng Shu, Liu Yue, Liu Jinyuan et al. Two-dimension numerical simulation on evolution of arc plasma[J]. Vacuum, 2004, 73(3):373-379.
  • 7Swierczynski B, Gonzalez J J, Taulet P et al. Advances in low-voltage circuit breaker modeling[J]. J. phys. D: Appl. Phys, 2004, 37(4):595-609.
  • 8Karetta F, Lindmayer M. Simulation of the gasdynamic and electromagnetic processes in low voltage switching arcs[J]. IEEE Trans. Comp. Trans. on Packa. Manufact. Technol, 1998, 21(1):96-102.
  • 9Yos J. Revised transport properties for high temperature air and its components[R]. Technical Release, Avco Space Systems Division,1967.
  • 10Lowke J J, Kovitya P, Schmidt H P. Theory of free-burning arc columns including the influence of the cathode[J]. J. Phys. D: Appl.Phys, 1992, 25(6): 1600-1606.

共引文献92

同被引文献23

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部