期刊文献+

改进的标准模糊神经网络的工程造价快速估算 被引量:9

Fuzzy Neural Network Based on Improved Standard Model and Its Application in Calculating Project’s Cost Quickly
下载PDF
导出
摘要 在对影响建筑工程造价因素分析和标准模糊神经网络结构分析的基础上,通过增加输入层与模糊层之间的权值v,加入规则的重要度γ,对标准模糊神经网络进行了改进,并建立基于改进的标准模糊神经网络的工程造价快速估算模型。将基于这种结构的模糊神经网络的工程造价快速估算模型应用于建筑工程的投标报价中,从仿真结果可以看出该网络模型学习时间较短,学习速率较快,精度较高。 Considering the reasons which can influence the project's cost and the fuzzy neural network architecture, the weight v between the input layer and the fuzzy layer, and the importance of rules were added to improve the fuzzy neural network based on the improved standard model and an model of calculating the project's cost quickly was constructed based on the improved network. At last, the data of the similar projects was used to train the fuzzy neural network by simulation, and some more exactly forecastable results were obtained. Synchronously the idea of calculating the project's cost quickly was made come true. The results of simulation indicate the method is feasible.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第5期1151-1154,1213,共5页 Journal of System Simulation
关键词 模糊神经网络 快速估算 工程造价 投标报价 fuzzy neural network calculating cost quickly project's cost bidding
  • 相关文献

参考文献7

二级参考文献30

  • 1DANG Yao-guo, LIU Si-feng, CHEN Ke-jia (College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China).The GM Models That x(n) Be Taken as Initial Value[J].厦门大学学报(自然科学版),2002,41(S1):276-277. 被引量:2
  • 2谢乃明,刘思峰.离散GM(1,1)模型与灰色预测模型建模机理[J].系统工程理论与实践,2005,25(1):93-99. 被引量:352
  • 3申余山.[D].郑州工业大学,1989.
  • 4孙增圻,徐红兵.基于T-S模型的模糊神经网络[J].清华大学学报(自然科学版),1997,37(3):76-80. 被引量:85
  • 5Chan K C,Comput Ind,1995年,26卷,61页
  • 6Chen Shyiming,Decis Support Syst,1994年,11卷,37页
  • 7Wang L X,Proc 1991 IEEE Int Symp on Intelligent Control,1991年,263页
  • 8王守辰,中国学生体质与健康研究,1987年,401页
  • 9Sun Zengqi, Deng Zhidong. A fuzzy neural network and its application to controls[J]. Artificial Intelligence in Engineering, 1996, (10): 311 - 315.
  • 10Wu Shiqian, Joo Meng, Gao Yang. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural network[J]. IEEE Transactions on Fuzzy Systems,2001,9(4):578-594.

共引文献84

同被引文献75

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部