期刊文献+

一种自适应紧凑遗传算法及其仿真研究 被引量:3

Adaptive Compact Genetic Algorithm and Simulation
下载PDF
导出
摘要 首先提出了用联合熵来刻画紧凑遗传算法的多样性方法;在此基础上针对紧凑遗传算法存在的早期收敛,同时提出了基于多样性的自适应紧凑遗传算法。该算法通过种群多样性的变化和每个基因座自身的进化状态来控制概率向量的更新。这种更新策略不仅可以跟踪种群的全局进化状态,同时还可以对基因座自身的进化状态进行局部调整,从而提高了进化中种群的多样性和算法的搜索效率。通过典型函数的测试,仿真结果表明了提出的算法的优越性和有效性。 The method was proposed for measuring diversity of compact genetic algorithm by joint-entropy. An adaptive compact genetic algorithm based on population diversity was proposed for solving compact genetic excursion. This algorithm updates probability vector by variety of population diversity and evolutionary state of every gene. This updating mechanism not only tracks global evolutionary state of population but also locally adjusts evolutionary state of every gene. The algorithm improves population diversity and the searching efficiency. The experiments show advantages and efficiencies of this algorithm through testing with typical function.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第5期1167-1169,共3页 Journal of System Simulation
关键词 紧凑遗传算法 联合熵 概率向量 多样性 compact genetic algorithm joint-entropy probability vector diversity
  • 相关文献

参考文献8

  • 1崔荣鑫,徐德民,严卫生.一种自主水下航行器路径规划算法[J].系统仿真学报,2006,18(12):3373-3376. 被引量:7
  • 2申元霞,张翠芳.一种新型保持种群多样性的遗传算法[J].系统仿真学报,2005,17(5):1052-1053. 被引量:11
  • 3G Harik, F G Lobo. The Compact Genetic Algorithm [J]. IEEE Trans on evolutionary computation (S1089-778X), 1999, 12(3): 287-297.
  • 4R Baraglia, J I Hidalgo. A hybrid heuristic for the traveling salesman problem[J]. IEEE transactions on evolutionary computation (S 1089-778X), 2001, 5(6): 613-622.
  • 5Francesco Cupertino, Ernesto Mininno. Elitist Compact Genetic Algorithms for Induction Motor Self-tuning Control [C]//IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2006: 3057-3064.
  • 6Chang Wook Ahn, R S Ramkrishna. Elitism-Based compact genetic algorithm [J]. IEEE Tans on evolutionary computation (S1089-778X), 2003, 7(4): 367-385.
  • 7Chenguang Zhou, Kui Meng. Compact Genetic Algorithm Mutated by Bit [C]//Proceedings of the 4thWorld Congress on Intelligent Control and Automation, Shanghai, china, 2002:1836-1840.
  • 8张晓缋,戴冠中,徐乃平.遗传算法种群多样性的分析研究[J].控制理论与应用,1998,15(1):17-23. 被引量:77

二级参考文献19

  • 1陈根社,陈新海.遗传算法的研究与进展[J].信息与控制,1994,23(4):215-222. 被引量:109
  • 2张晓缋,戴冠中,徐乃平.一种新的优化搜索算法──遗传算法[J].控制理论与应用,1995,12(3):265-273. 被引量:96
  • 3诸静.模糊控制原理及应用[M].北京:机械工业出版社,1999..
  • 4Qi Xiaofeng,IEEE Trans Neural Netw,1994年,5卷,1期,102页
  • 5Qi Xiaofeng,IEEE Trans Neural Netw,1994年,5卷,1期,120页
  • 6I K Nikolos,K P Valavanis,N C Tsourveloudis.Evolutionary Algorithm Based Offline/Online Path Planner for UAV Navigation[J].IEEE Trans.System man and cybernetics (S1083-4419),2003,33(6):898-912.
  • 7Y Petillot,I T Ruiz.Underwater Vehicle Obstacle Avoidance and Path Planning Using a Multi-Beam forward Looking Sonar[J].IEEE J.Ocean Engineering (S0364-9059),2001,26(2):240-251.
  • 8J J Keegan.Trajectory path planning for the Aries AUV[D].Master Thesis of Naval Post Graduate School.2002.
  • 9A Alvarez,A Caiti,R Onken.Evolutionary Path Planning for Autonomous Underwater Vehicles in a Variable Ocean[J].IEEE J.Ocean Engineering (S0364-9059) 2004,29(2):418-429.
  • 10Lee S,Park J.Neural Computation for Collision-free Path Planning[J].J.Intel.Manu.(S0956-5515).1991,(2):315-326.

共引文献91

同被引文献19

  • 1赵曙光,焦李成,王宇平,杨万海.基于均匀设计的多目标自适应遗传算法及应用[J].电子学报,2004,32(10):1723-1725. 被引量:10
  • 2蔡良伟,李霞.遗传算法交叉操作的改进[J].系统工程与电子技术,2006,28(6):925-928. 被引量:45
  • 3Hart W E, Kammeyer T E, Belew R K. The role of development in genetic algorithms [M]//Whitley L D, Vose M D (Eds.), Foundations of Genetic Algorithms 3. San Mateo, CA, USA: Morgan Kaufmann Publishing, 1995: 315-332.
  • 4Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithm [J]. IEEE Trans. Syst., Man, Cybem. (S0018-9472), 1994, 24(4): 656-667.
  • 5Sanchez-Velazco J, Bullinaria J A. Sexual selection with competitive/ co-operative operators for genetic algorithms [C]//Proc. lASTED Int. Cone Neural Netw., Comput. Intell. (NCI 2003). USA: IASTED/ ACTA Press, 2003: 191-196.
  • 6Raghuwanshi M M, Kakde O G. Genetic algorithm with species and sexual selection [C]//Proc. 2006 IEEE Congr. Cybern., Intell. Syst.. USA: IEEE Press, 2006: 1-8.
  • 7Whitley D, Gordon V S, Mathias K. Lamarckian evolution, the Baldwin effect and function optimization [M]// Davidor Y, et al. (Eds.), Parallel Problem Solving from Nature - PPSN III. Berlin, Germany: Springer-Verlag, 1994: 6-15.
  • 8Kim W C Ku. Enhance the Baldwin effect by strengthening the correlation between genetic operators and learning methods [C]//Proc. 2006 IEEE Congr. Evol. Comput.. USA: IEEE Press, 2006: 3302-3308.
  • 9Andersson M. Sexual Selection [M]. USA: Princeton University Press, 1994.
  • 10Baldwin J M. A new factor in evolution [J]. American Naturalist (S0003-0147), 1896, 30(3): 441-451.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部