期刊文献+

辨识智能作动器中迟滞非线性的两种方法(英文) 被引量:1

Two Methods to Identify Hysteresis in Smart Actuators
下载PDF
导出
摘要 智能化是当今世界的发展趋势。智能材料结构作为研究热点之一,应用于航空、航天、生物及医药等诸多领域。智能作动器与智能传感器是智能材料结构的两个主要研究方向。迟滞现象是存在于大量智能材料中的非线性现象,对整个控制系统可能带来不良影响,如稳定性的恶化甚至丧失等。Preisach模型常用于智能材料中针对迟滞现象的建模。基于一阶滞回曲线获得智能作动器的输入输出数据,从理论上研究了经典Preisach模型两种工程上易实现的辨识方法,并应用到一种真实的智能作动器——WIDS-IA压电型作动器,仿真与实验结果表明,两种辨识方法均有效,且误差在同一数量级。为广泛存在迟滞非线性的智能作动器建模提供了理论依据,并具有工程实用价值。 Intelligence is the trend of this world. Smart material structure is a hotspot for it can be used in the area of aeronautics, astronautics, biology and medicine, etc. Smart actuator and smart sensor are two main parts of smart material structure. Hysteresis is a nonlinear phenomenon existing in a large quantity of smart materials which can lead to bad effects on control plants. Preisach model is widely used in the modeling of smart materials. The I/O data of smart actuator was obtained based on first order reversal curves (FORCs), and theoretical research of two methods to identify the classical Preisach model was studied. The simulation and experimental results of a smart actuator--WIDS-IA piezo actuator show the validity and the consistency of these two methods.
作者 李帆 赵建辉
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第5期1214-1217,1237,共5页 Journal of System Simulation
基金 National Natural Science Foundation of China (50674005)
关键词 智能作动器 迟滞非线性 PREISACH模型 辨识 smart actuator hysteresis Preisach model identification
  • 相关文献

参考文献3

二级参考文献31

  • 1党选举,谭永红.在Preisach模型框架下的似对角动态神经网络压电陶瓷迟滞模型的研究[J].机械工程学报,2005,41(4):7-12. 被引量:7
  • 2G.Tao,P V Kolotovic.Adaptive control of plants with unknown hysteresis [J].IEEE trans.Automatic Control,1995,40(2):200-212.
  • 3I D Mayergoyz.Mathematical models of hysteresis [M].New York:Springer-Verlag,1991.
  • 4Ping Ge,Musa Jouaneh.Generalized preisach model for hysteresis nonlinearity of piezoceramic actuator [J].Precision Engeering,1997,20(2):99-111.
  • 5Declan Hughes,John T Wen.Preisach modeling of piezoceramic and shape memory alloy hystereis [J].Smart mater.Struct,1997,6:297-300.
  • 6Li Chuntao,Tan Yonghong.A neural networks model for hysteresis nonlinearity [J].Sensors and Actuators A,2004,112:49-54.
  • 7A A Adly,S K Abd-El-Hafiz.Using neural networks in the identification of Preisach-type hysteresis models [J].IEEE trans.Magnetics,1998,34(3):629-635.
  • 8Jyh-Da Wei,Chuen-Tsai Sun.Constructing hysteretic memory in neural networks [J].IEEE trans.Systems,man and cybernetics Part B:cybernetics,2000,30(4):601-609.
  • 9R B Gorbert.Control of hysteretic system with Preisach representation [D].University of Waterloo,Ontario,Canada,1997.
  • 10Cincotti S, Marchesi M, and Serri A. A neural network model of parametric nonlinear hysteretic inductors [J]. Magnetics, IEEE Transactions on 1998, 34(5): 3040-3043.

共引文献32

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部