期刊文献+

基于颜色特征对木质板材分级的研究 被引量:14

Research on Wooden Board Classification Based on Color and Texture Features
下载PDF
导出
摘要 给出几种基于颜色和纹理特征木质板材的分级算法,这几种方法通过主颜色和共生矩阵特征,分别利用神经网络中的RBF网络和K-近邻对木质板材样本图像进行处理,然后进行分类的方法。木质板材样本图像通过对木材加工处理采集而得到的。主颜色特征是反映一幅图像的基本面貌的,并通过HSV颜色模型、量化、颜色直方图和绝对距离而得到的;再加上共生矩阵特征。选取三种主颜色方案数据,经过Matlab7.0平台进行程序设计,对木质板材样本图像数据进行训练和测试,并加以验证。实验结果表明,这几种方法能够较好地解决木材分级的问题。 Several graduation algorithms for wooden board were given based on the color and texture feature, with which the specimen images of wooden board were processed by the RBF neural network and K- nearest neighbor separately based on the main color characteristic and co-occurrence matrix characteristic, and then the wooden boards were classified. All the original images of wooden board specimens were collected after the specimens were preprocessed. Here the main color characteristic which reflected the basic appearance of an image was obtained through the HSV color model, the quantification, the color histogram and absolute distance. With the main color and co-occurrence matrix characteristic, the data of three main color plans of the collected image data of wooden board specimens were trained and tested, then verified finally on Matlab7.0 platform. The result shows that all these methods can classify the wooden board well.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第5期1372-1376,共5页 Journal of System Simulation
基金 黑龙江省自然科学基金(C2004-03) 哈尔滨市自然科学基金(2004AFXXJ020)
关键词 颜色特征 颜色直方图 纹理特征 共生矩阵 RBF 木质板材分级 color feature color histograms texture feature co-occurrence matrix RBF wooden board classification
  • 相关文献

参考文献10

二级参考文献12

  • 1Stricker M, Orengo M. Similarity of color images [J]. SPIE Storage and Retrieval for Image and Video Databases Ⅲ. 1995,(2185): 381-392.
  • 2章毓晋.图像工程图像理解与计算机视觉[M].北京:清华大学出版社,1999.
  • 3韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2004.
  • 4HARALICK R M. Statistical and structural Approaches to Texture [J]. proceeding of IEEE, 1975,67(5) :786 -504.
  • 5Bharati M H, LIU J J, MAC G, Image texture analysis:methods and comparisons [ J ]. Chemo metrics & Intelligent Laboratory Systems, 2004, 72( 1 ) :57 -65.
  • 6BARALDI A, PARMIGGIAN F. An investigation of texture characteristics associated with gray level co-occurrence matrix statistical parameters [ J ]. IEEE Trans. On Geo - science and Remote sensing, 1995, 33(2): 293-303.
  • 7POTILLE G J, TRUEBA S I, De MIGUEL V G. Efficient Multi -spectral texture segmentation using multivariate statistics [ J ]. IEEE Proceeding, Vision Image,and Signal Processing, 1998, 145(5) :357 -364.
  • 8曹莉华,柳伟,李国辉.基于多种主色调的图像检索算法研究与实现[J].计算机研究与发展,1999,36(1):96-100. 被引量:110
  • 9金韬,任秀丽.图像检索中颜色特征的提取与匹配[J].计算机辅助设计与图形学学报,2000,12(6):459-462. 被引量:20
  • 10汪黎明,陈健敏,王锐,姜红.织物折皱纹理灰度共生矩阵分析[J].青岛大学学报(工程技术版),2003,18(4):5-8. 被引量:34

共引文献293

同被引文献165

引证文献14

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部