期刊文献+

凸体截面的稳定性

Stable Determination of Convex Bodies from Intersections
下载PDF
导出
摘要 证明了如果两个凸体被过原点的任何一个超平面所截得到的截面具有相等的平均弦长和相同的对偶Steiner点,则这两个凸体是重合的,并且得到此定理的一个的稳定性版本. If two convex bodies have the property that their intersections by any hyperplane through the origin have the same average chord length and the same dual Steiner point, then the two bodies are identical. This result is proved in a stronger stability version.
机构地区 上海大学数学系
出处 《数学年刊(A辑)》 CSCD 北大核心 2008年第1期91-96,共6页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10671117)资助的项目
关键词 凸体 对偶Steiner点 稳定性 Funk截面定理 平均弦长 Convex body, Dual Steiner point, Stability, Funck's intersection theorem, Average chord length.
  • 相关文献

参考文献15

  • 1Funk P., Uber Flachen mit lauter geschlossenen geodatischen Linien [J]. Math. Ann., 1913.74:278 300.
  • 2Gardner R. J. and Vassallo S., Inequalities for dual isoperimetric deficits [J]. Mathematika, 1998, 45:269-285.
  • 3Minkowski H., Volumen und Oberflache [J]. Math. Ann., 1903, 57:447- 495.
  • 4Bonnesen T., Problemes des Isoperimetres de Isepiphanes [M]. Pairis: Gauthier-Villars, 1929.
  • 5Groemer H., Stability theoremes for projections and central symmetrization [J]. Arch. Math., 1991, 56:394-399.
  • 6Goodey P. R. and Groemer H., Stability results for first order projection bodies [J].Proc.Amer.Math. Soc., 1990, 109:1103 -1114.
  • 7Groemer H., Stability properties of geometric inequalities [J]. Amer. Math. Monthly, 1990, 97:382- 394.
  • 8Groemer H. and Schneider R., Stability estimates for some geometric inequalities [J]. Bull. Lond. Math. Soc., 1991, 23:67- 74.
  • 9Gardner R. J. and Vassallo S., Stability inequalities in the dual Brunn-Minkowski theory [J]. J. Math. Anal. Appl., 1999, 231:568- 587.
  • 10Binwu He, The stability of the dual aleksandrov-fenchel inequality [J]. Acta. Math. Sinica, 2005, 48:1071 -1078.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部