摘要
设M为n维完备无边界的流形,它的Ricci曲率有下界-K,这里K为实常数.假设M上的向量场B满足|B|≤γ且▽B≤K_*,这里γ为非负常数,K_*为实常数,则带权Laplacian方程ΔAu+Bu=0任意正的光滑解满足最优梯度估计|▽u|~2/(u^2)≤m(K+K_*)+((mγ~2)/(m-n)),其中任意常数m>n.
Let M be any n-dimensional complete manifold without boundary and with Ricci curvature bounded below by -K, where K is a real constant. If B is a vector field such that the norm |B|≤γ and △↓B≤K* on M, for nonnegative constant γ and real constant K*, then any positive smooth solution of the equation △u+Bu =0 satisfies the following sharp gradient estimate
|△↓u|^2/u^2≤m(K+K*)+mγ^2/m-n,
on M for any real constant m 〉 n.
出处
《数学年刊(A辑)》
CSCD
北大核心
2008年第1期107-112,共6页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10671103)
福建省青年基金(No.2006F3112)
福建省教育厅基金(No.JA06036)
莆田学院育苗基金(No.2006YM001)资助的项目