期刊文献+

带权Laplacian方程解的最优梯度估计

Sharp Gradient Estimate for Positive Solutions of the Laplacian with Drift
下载PDF
导出
摘要 设M为n维完备无边界的流形,它的Ricci曲率有下界-K,这里K为实常数.假设M上的向量场B满足|B|≤γ且▽B≤K_*,这里γ为非负常数,K_*为实常数,则带权Laplacian方程ΔAu+Bu=0任意正的光滑解满足最优梯度估计|▽u|~2/(u^2)≤m(K+K_*)+((mγ~2)/(m-n)),其中任意常数m>n. Let M be any n-dimensional complete manifold without boundary and with Ricci curvature bounded below by -K, where K is a real constant. If B is a vector field such that the norm |B|≤γ and △↓B≤K* on M, for nonnegative constant γ and real constant K*, then any positive smooth solution of the equation △u+Bu =0 satisfies the following sharp gradient estimate |△↓u|^2/u^2≤m(K+K*)+mγ^2/m-n, on M for any real constant m 〉 n.
作者 阮其华
出处 《数学年刊(A辑)》 CSCD 北大核心 2008年第1期107-112,共6页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10671103) 福建省青年基金(No.2006F3112) 福建省教育厅基金(No.JA06036) 莆田学院育苗基金(No.2006YM001)资助的项目
关键词 梯度估计 带权Laplacian方程 刘维尔定理 Gradient estimate, Laplacian with drift, Liouville theorem
  • 相关文献

参考文献9

  • 1Yau S. T., Harmonic functions on complete Riemannian manifolds [J], Commun. Pure Appl. Math., 1975, 28:201-228.
  • 2Grigor yan A., The heat equation on noncompact Riemannian manifolds [J], Math. USSR-Sb., 1992, 72:47-77.
  • 3Saloff-Coste L., A note on Poincare, Sobolev, and Harnack inequalities [J]. Internatt. Math. Res. Notices. 1992, 2:27- 38.
  • 4Gonzalez B. J. and Negrin E. R., Gradient estimates for positive solutions of tile Laplacian with drift [J], Proc. Amer. Math. Soc., 1999, 127(2):619- 625.
  • 5Setti A. G., Gaussian estimates for the heat kernel of tile weighted Laplacian and fractal measures [J], Canad. J. Math., 1992.44(5):1061- 1078.
  • 6Li X. D., Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds [J], J. Math. Pures Appl., 2005, 84:1295 -1361.
  • 7Bakry D. and Emery M., Diffusion hypercontractives, Seminaire de Probabilies XIX [J], Lecture Notes in Math., 1985. 1123:177- 206.
  • 8Calabi E., An extension of E. Hopf's maxinmm principle with an application to Riemannian geometry [J], Duke Math. J., 1958, 25(1):45-56.
  • 9Cheng S. Y. and Yau S. T., Differential equations on Riemannian manifolds and their geometric applications [J], Commun.Pure Appl. Math., 1975. 28:333- 353.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部