期刊文献+

Teichmüller子空间T_O不是星形的

The Teichmüller Space T_O Is Not Starlike
下载PDF
导出
摘要 构造了一个拟共形映照,其复特征μ满足[μ]=[0],但是当t(t>0)充分小时,[tμ]不属于Teichmüller子空间T_O,从而说明T_O空间不是星形的. This paper constructs an example of the Teichmǖller space T0 shows that there exists a quasiconformal mapping on a Jordan domain S with complex dilatation μ satisfying [μ] = [0], but [tμ] (t 〉 0) is not in To when t is small enough. So the Teichmǖller space To is not starlike.
作者 周泽民
出处 《数学年刊(A辑)》 CSCD 北大核心 2008年第1期121-124,共4页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10771153) 中国人民大学信息学院科研基金资助的项目
关键词 拟共形映照 边界伸缩商 Teichmǖller空间 Quasiconformal mapping, Boundary dilatation,Teichmǖller space
  • 相关文献

参考文献10

  • 1Reich E., Extremal quasiconformal mapping of the disk [M]// R. Kiihnau, ed., Handbook of Complex Analysis: Geometric Function Theory, Vol. 1, North-Holland: Elsevier Science B. V., 2002:75 135. MR 2004c:30036.
  • 2Ahlfors L. V., Lectures on Quasiconformal Mappings [M]. New Work: Van Nostrand, 1966.
  • 3Lehto O. and Virtanen K. I., Quasiconformal Mappings in the Plane [M]. New York: Springer-Verlag, 1987.
  • 4Reich E., Construction of Hamilton sequences for certain Teichmuller mappings [J]. Pro. Amer. Math. Soc., 1988, 103:789- 796.
  • 5Lakic N., Substantial boundary point for plane domains and gardiner's conjecture [J]. Ann. Acad. Sci. Fenn., 2000, 25:285- 306.
  • 6Fehlmann R.,Uber extremale quasikonforme abbildungen [J]. Comment. Math. Helv., 1981, 56:558 -580.
  • 7Fehlmann R., Quasiconformal mappings with free boundary components [J]. Ann. Acad. Sci. Fenn., 1982, 7:337-347.
  • 8Gardiner F. P. and Sullivan D. P., Symmetric structures on a closed curve [J]. Amer. J. Math., 1992, 114:683- 786.
  • 9Oardiner F. P. and Lakic N., Quasiconformal Teichmuller theory [M]// Math. Surveys and Monographys, Vol. 76, Providence: AMS, RI, 2000.
  • 10Reich E. and Strebel K., Extremal quasiconformal mappings with given boundary values [C] // Contributions to Analysis, Beijing: Academic Press, 1974:375- 391.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部