Inequalities of Eigenvalues for the Dirac Operator on Compact Complex Spin Submanifolds in Complex Projective Spaces
Inequalities of Eigenvalues for the Dirac Operator on Compact Complex Spin Submanifolds in Complex Projective Spaces
摘要
For a compact complex spin manifold M with a holomorphic isometric embed- ding into the complex projective space,the authors obtain the extrinsic estimates from above and below for eigenvalues of the Dirac operator,which depend on the data of an isometric embedding of M.Further,from the inequalities of eigenvalues,the gaps of the eigenvalues and the ratio of the eigenvalues are obtained.
基金
the Science Research Development Fund of Nanjing University of Science and Technology(No.AB96228).
参考文献18
-
1Anghel, N., Extrinsic upper bounds for eigenvalues of Dirac-type operators, Proc. Amer. Math. Soc., 117, 1993, 501-509.
-
2Ashbaugh, M. S., Isoperimetric and universal inequalities for eigenvalues, Spectral Theory and Geometry (Edinburgh, 1998), E. B. Davies and Yu Safalov (eds.), London Math. Soc. Lecture Notes, Vol. 273, Cambridge Univ. Press, Cambridge, 1999, 95-139.
-
3Ashbaugh, M. S., Universal eigenvalue bounds of Payne-Polya-Weinberger, Hile-Prottter, and H. C. Yang, Proc. Indian Acad. Sci. Math. Sci., 112, 2002, 3-30.
-
4Bar, C., Extrinsic bounds for eigenvalues of the Dirac operator, Ann. Glob. Anal. Geom., 16, 1998, 573- 596.
-
5Baum, H., An upper bound for the first eigenvalue of the Dirac operator on compact spin manifolds, Math. Z., 206, 1991, 409-422.
-
6Bunke, U., Upper bounds of small eigenvalues of the Dirac operator and isometric immersions, Ann. Glob. Anal. Geom., 9, 1991, 109-116.
-
7Chen, D. G., Extrinsic eigenvalue estimates of the Dirac operator, math.DG/0701847.
-
8Cheng, Q. M. and Yang, H. C., Estimates on eigenvalues of Laplacian, Math. Ann., 331, 2005, 445-460.
-
9Cheng, Q. M. and Yang, H. C., Inequalities of eigenvalues on Laplacian on domains and compact hypersurfaces in complex projective spaces, J. Math. Soc. Japan, 58, 2006, 545-561.
-
10Cheng, Q. M. and Yang, H. C., Bounds on eigenvlues of Dirichlet Laplacian, Math. Ann., 337, 2007, 159-175.
-
1陈维桓.On the Comparison Theorems for the Volume of Tubes in Kahlerian Manifolds[J].Chinese Quarterly Journal of Mathematics,1992,7(2):91-100.
-
2周向宇.强拟凸域到单位球的嵌入[J].数学学报(中文版),1989,32(1):122-133.
-
3曹锡芳.复射影空间中复子流形的一点注记[J].Journal of Mathematical Research and Exposition,1995,15(4):524-524.
-
4Zhao Ye.STABILITY AND INSTABILITY OF SOLITARY WAVES FOR ABSTRACT COMPLEX HAMILTONIAN SYSTEM[J].Journal of Partial Differential Equations,2005,18(4):371-383. 被引量:1
-
5董杰方.复射影空间中复子流形的整体Pinching定理[J].武汉工程职业技术学院学报,1997,10(4):53-58.
-
6冯惠涛,郭恩力.A super-twisted Dirac operator and Novikov inequalities[J].Science China Mathematics,2000,43(5):470-480. 被引量:2
-
7李红,王侃民,马立林.Compacton-Like Solutions in a Camassa-Holm Type Equation[J].Communications in Theoretical Physics,2015(11):515-518.
-
8吴志成,钟春平.SOME RESULTS ON PRODUCT COMPLEX FINSLER MANIFOLDS[J].Acta Mathematica Scientia,2011,31(4):1541-1552. 被引量:4
-
9FU JIXIANG(Institute of Mathematics, Fudan University, Shanghai 200433, China).THE MODULI SPACE OF COMPLEX LAGRANGIAN SUBMANIFOLDS IN THE HYPER-KAEHLER MANIFOLD[J].Chinese Annals of Mathematics,Series B,1999,20(4):393-400.
-
10孙弘安.复射影空间中复子流形上的一个Pinching定理[J].吉首大学学报,1989,10(2):11-15.