期刊文献+

稀疏森林:真彩色直方图快速生成算法

Sparse forest:fast algorithm for the generation of true-color histogram
下载PDF
导出
摘要 基于空间数据索引技术,提出了一种新的真彩色图像颜色直方图生成算法,这种算法采用一种新的空间数据结构——稀疏森林,通过将RGB空间中三维颜色(点)投影至(r,g,0)平面进行"降维",将三维空间点索引变成一维数据索引问题,降低了问题的复杂度。进一步,利用B树高度平衡、多分支、低深度、结构紧凑等特点,对一维数据进行索引。理论与实验结果表明,稀疏森林保留了全部颜色空间信息,生成、索引速度快,可以方便地进行点查询和区域查询,并且空间效率比较高。 The generation of color histogram is one of the basic problems in many researches. A novel algo-rithm, sparse forest (SF), for generation of color histogram is proposed based on spatial data indexing. By projecting colors on the (r, g, 0) plane, the problem of three-dimensional color indexing is reduced to one-dimen- sional indexing, which is performed using B-tree. Though conceptually simple; this data structure is capable of preserving color spatial information and tends to provide excellent computational performance and good space utilization. The analytical and experimental results show that the algorithm compares favorably with the traditional spatial data structures in terms of overall algorithm complexity in the case of color histogram.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第2期345-350,共6页 Systems Engineering and Electronics
基金 国家“十五”科技攻关重点项目(2001BA501A16-012004BA523B06-02) 国家“863”高技术研究发展计划(2006AA012146)资助课题
关键词 图像处理 真彩色图像 颜色直方图 颜色索引 空间数据结构 image processing true-color image color histogram color indexing spatial data structure
  • 相关文献

参考文献14

  • 1刘忠伟,章毓晋.十种基于颜色特征图像检索算法的比较和分析[J].信号处理,2000,16(1):79-84. 被引量:60
  • 2Bentley J L, Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18 (9) : 509 - 517.
  • 3Robinson J T. The K-D-B-tree: A search structure for large multidi- mensional dynamic indexes[C]//Proc. ACM SIGMOD International Conference on Management of Data, 1981 : 10 - 18.
  • 4Guttman A. R-trees: A dynamic index structure for spatial searching [C]//Proc. ACM SIG.MOD International Conference on .Management of Data, Boston, MA, 1984,6: 47- 57.
  • 5Sellis T, Roussopoulos N, Faloutsos C. The R+-tree: A dynamic index for multidimensional objeets[C] // Proceedings of the Conference on Very Large Databases, Brighton, England, 1987,9: 507-518.
  • 6Beckmann N, Kriegel H P, Schneider R, Seeger B, The R * -tree; An effident and robust access method for points and reetangles[C]// Proc, ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ , 1990,5; 322 - 331.
  • 7Lin K I, Jagadish H V, Faloutsos C. The TV-tree: An index structure for high-dimensional data[J]. The VLDB Journal, 1994, 3(4): 517-542.
  • 8Berchtold S, Keim D A, Kriegel H P. The X-trees An index structure for high-dimensional data [C] //Proceedings of the 22nd International Conference on Very Large Databases, Bombay, India, 1996,9: 28-39.
  • 9罗迒哉,薛向阳,朱兴全,吴立德.直方图的优化存储和快速检索[J].计算机学报,1999,22(12):1328-1331. 被引量:2
  • 10Jang J W, Park H, Prasanna V K. A fast algorithm for computing a histogram on reconfigurable mesh[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995, 17(2) :97 - 106.

二级参考文献3

  • 1Huang T S,Proc Int Sympo Multimedia Information Processing,1997年,11页
  • 2Scharcanski J,Pattern Recognition Lett,1994年,15卷,191页
  • 3Zhang Y J,SPIE.3312,1998年,371页

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部