期刊文献+

基于支持向量机的水电机组故障诊断 被引量:10

Support Vector Machines Based Approach for Hydroelectric Generating Unit Fault Diagnosis
下载PDF
导出
摘要 针对水电机组故障样本少的问题,将支持向量机引入水电机组故障诊断研究,提出一种结合小波频带分解与最小二乘支持向量机的水电机组故障诊断模型。基于机械设备"能量-故障"映射关系,运用小波分解提取机组振动信号各频带能量特征值,然后将能量特征值输入到多分类的支持向量机,实现对机组不同故障类型的识别。通过实验信号分析,表明将小波能量提取与支持向量机结合进行水电机组故障诊断是可行有效的,并具有较高的故障分辨能力,为水电机组故障诊断提供了新的方法和思路。 To solve the small-sample problem in the hydroelectric generating unit (HGU), SVM (Support Vector Machines) is introduced, and a new diagnosis model of least squares support vector machines (LS-SVM) based on wavelet decomposition with energy extraction is proposed in this paper. Based on the mapping of energy and fault, the energy features of different frequency band of vibration signal are extracted through wavelet decomposition. These extracted feature vectors are input into the multi classification LS-SVM to detect different abnormal cases. Testing results show that the model is feasible and effective in the HGU fault diagnosis and has higher accuracy of classification, which provides a new method for fault diagnosis of HGU.
出处 《中国农村水利水电》 北大核心 2008年第1期114-116,119,共4页 China Rural Water and Hydropower
关键词 水电机组 支持向量机 小波变换 能量提取 故障诊断 hydroelectric generating unit (HGU) SVM wavelet transform energy extraction fault diagnosis
  • 相关文献

参考文献9

  • 1V N Vapnik. An overview of statistical learning theory[J].Neural Networks,IEEE Transactions on,1999,10(5):988--999.
  • 2C J C Burges. A tutorial on support vector machines for pattern reeognition[J]. Data Mining and Knowledge Discovery, 1998, 2 (2):121--167.
  • 3A J Smola, B Scholkopf. A tutorial on support vector regression [J]. Statistics And Computing, 2004,14 (3): 199-- 222.
  • 4VN Vapnik. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 5J Weston, C Watkins. Multi-class support vector maehines[Z].University of London, London, 1998.
  • 6H Chih-Wei, L Chih-Jen. A comparison of methods for multiclass support vector machines [J]. Neural Networks, IEEE Transactions on, 2002, 13(2): 415-425.
  • 7JAK Suykens, J Vandewalle. Multiclass least squares support vector machines[C]. Neural Networks, 1999. IJCNN'99. International Joint Conference on, Washington,DC, 1999:900--903.
  • 8沈东,褚福涛,陈思.水轮发电机组振动故障诊断与识别[J].水动力学研究与进展(A辑),2000,15(1):129-133. 被引量:68
  • 9徐劲力.支持向量机在水质评价中的应用[J].中国农村水利水电,2007(3):7-9. 被引量:17

二级参考文献7

共引文献83

同被引文献68

引证文献10

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部