期刊文献+

微晶纤维素在盐酸、甲酸体系中的水解动力学 被引量:6

Hydrolysis Kinetics of Microcrystalline Cellulose in Formic Acid System
下载PDF
导出
摘要 研究了微晶纤维素在盐酸、甲酸体系(4%盐酸,甲酸78.22%,水17.78%)中的水解动力学,以及反应温度在55~75℃、反应时间0~9h对葡萄糖得率的影响,并探讨了葡萄糖在该水解体系中的降解情况。研究结果表明,葡萄糖的降解反应和纤维素的水解反应相比是个快速反应。微晶纤维素在盐酸、甲酸体系中的水解速率表现在反应温度为55℃时,水解速率为6.34×10-3h-1;反应温度为65℃时,水解速率为2.94×10-2h-1;反应温度为75℃时,水解速率为6.84×10-2h-1。葡萄糖的降解速率表现为反应温度为55℃时,降解速率为0.01h-1;反应温度为65℃时,降解速率为0.14h-1;反应温度为75℃时,降解速率为0.34h-1。微晶纤维素水解的表观活化能为105.61kJ/mol,葡萄糖的降解表观活化能131.37kJ/mol。 An experiment was conducted to study the hydrolysis kinetics of mieroerystalline cellulose in the formic acid system with 4% hydrocldorie acid and 78.22% formic acid under mild conditions. The effects of temperature (from 55 to 75 degrees C) and retention time (0 - 9 h) on the glucose concentration were analyzed, and the degradation of glucose was also discussed. Result indicates that the degradation of glucose is a fast reaction compared with the hydrolysis reaction of cellulose. The hydrolysis velocities of mierocrystalline cellulose increase with temperature, which are 6.34 ×10^-3 per hour at 55 degrees C, 2, 94 × 10^ -2 per hour at 65 degrees C, 6.84 × 10^ -2 per hour at 75 degrees C. The velocities of glucose degradation are 0, 01 per hour at 55 degrees C, 0.14 per hour at 65 degrees C, 0.34 per hour at 75 degrees C. The activation energy of mierocrystalline cellulose hydrolysis is 105.61 kJ/mol, and that of glucose degradation is 131.37 kJ/mol.
出处 《东北林业大学学报》 CAS CSCD 北大核心 2008年第4期63-65,共3页 Journal of Northeast Forestry University
基金 教育部重大科研项目(750548)
关键词 微晶纤维素 水解 动力学 Mieroerystalline cellulose Hydrolysis Kinetics
  • 相关文献

参考文献24

  • 1Rostrup Nielsen J R. Making fuels from biomass [ J]. Science,2005,308 : 1421 - 1422.
  • 2Sun Ye, Cheng Jiayang. Hydrolysis of lignocellulosic materials for ethanol production: a review[ J]. Bioresollrce Technology,2002,83 (1):1 -11.
  • 3Mielenz J R. Ethanol production from biomass: technology and commercialization status[ J]. Ecology and Industrial Microbiology, 2001,4( 3 ) :324 - 329.
  • 4Zhu Shengdong, Wu Yuanxin, Yu Ziniu, et al. Pretreatment by mlcrowave/alkali of rice straw and its enzymlcy drolysis [ J ]. Process Biochemistry, 2005,40 ( 9 ) : 3082 - 3086.
  • 5Zhang Y, Himmel E M, Mielenz J R. Outlook for cellulase improvement screening and selection strategies [ J ]. Biotechnology Advan ces, 2006,24 ( 5 ) :452 - 481.
  • 6Mosler N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocelluloslc biomass [ J ]. Bioresource Technology ,2005,96 ( 6 ) :673 - 686.
  • 7Silverstein R A, Chen Y, Shanna R, et al. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks [ J ]. Bioresource Technology,2007,98 ( 16 ) :3000 - 3011.
  • 8William S M, Michael J A. Productive and parasitic pathways in dilute acid catalyzed hydrolysis of cellulose[ J]. Indus, try Engineering Chemistry Research,1992,31 ( 1 ) :94 - 100.
  • 9Maloney M T, Chapman T W, Baker A J. Dilute acid hydrolysis of paper birch: kinetic study of xylan and acetyl -group hydrolysis [ J ]. Biotechnology and Bioengineering, 1985,27 (3) :355 - 361.
  • 10Abatzoglou N, Chonlet E, Belkacemi K, et al. Phenomenological kinetics of complex systems : The development of a generalized severity parameter and its application to lignocellulosics fractionation [ J]. Chemical Engineering Science, 1992,47 ( 5 ) : 1109 - 1122.

同被引文献66

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部