期刊文献+

一种多层不完全LU分解预处理方法在合元极技术中的应用

Application of Multilevel Inverse-Based ILU Preconditioning Approach to Hybrid FE/BI/MLFMA for 3D Scattering
下载PDF
导出
摘要 本文将一种多层不完全LU分解预处理方法应用于合元极技术(即混合有限元、边界元、快速多极子技术).理论和数值实验表明,此种预处理方法能大大减少合元极技术的内存需求,同时兼有极高的计算效率.本文首先给出此种预处理方法的构造方式和实施步骤,接着对此种预处理方法在合元极技术中的数值性能进行了理论和数值实验的分析研究;最后,本文计算了几种电大尺寸复杂目标的散射,以展示应用了此种预处理方法的合元极技术的计算能力. A novel multilevel inverse-based ILU (MIB-ILU) preconditioning approach is applied to the hybrid finite-element/boundary-integral/multilevel fast mullipole algorithm (FE/BI/MLFMA) for 3D scattering problems. Unlike the traditional ILU precoaditioning technique, this MIB-ILU approach borrows the concept of the algebraic multi-grid method (AMG) to construct an algebraic multilevel recursive ILU precondifioning framework. Moreover, a new version of ILU factorizafion and an inverse-based dropping strategy are employed to improve the robust of the preconditioning approach. The numerical performance of the MIB-ILU approach is studied.It is demonstrated that this approach exhibits high efficiency in memory and CPU time. Then,the posed MIB-ILU approach is applied to the hybrid FE/BI/MLFMA method. A variety of numerical experiments are carded out, demonstrating that the proposed approach offers a good compromise between robustness and efficiency, and greatly improves the computing capability of the hybrid FE/BI/MLFMA.
作者 彭朕 盛新庆
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第2期230-234,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60371004) 国家973重点基础研究发展规划基金(No.2005CB321702)
关键词 多层不完全LU分解 预处理技术 合元极技术 incomplete LU preconditioning inverse-based dropping strategy multilevel reetn-sive framework electromagnetic scattering hybrid finite-element/boundary-integral/multilevel fast multipole algorithm
  • 相关文献

参考文献15

  • 1LU N, et al. Application of fast multipole method to finite-element boundary-integral solution of scattering problems[J]. IEEE Trans.Antennas Propagat, 1996,44(6) :781 - 786.
  • 2SHENG X Q,et al.On the formulation of hybrid finite-element and boundary-integral method for 3D scattering [ J ]. IEEEE Trans. Antennas Propagat, 1998,46(3) :303 - 311.
  • 3SHENG X Q, et al. Implementation and experiments of a hybrid algorithm of the fmite-element boundary-integral method for open-region inhomogeneous electromagnetic problems[J]. IEEE Trans. Antennas Propagat,2002,50(2) : 163 - 167.
  • 4LIU J,etal.A highly effective preconditioner for solving the finite element-boundary integral matrix equation for 3-D scattering[J].IEEE Trans. Antennas Propagat,2002,50(9):1212 - 1221.
  • 5SHENG X Q, et al. Scattering from large bodies with cracks and cavities by fast and accurate hybrid finite-element boundary-integral method[J]. IEEE Trans. Antennas Propagat, 2000, 48 (8) : 1153 - 1160.
  • 6LIU J, et al. Scattering analysis of a large body with deep cavities[J]. IEEE Trans. Antennas Propagat, 2003,51 (6) : 1157 - 1167.
  • 7Tang Y H,et al. Analysis of electromagnetic scattering from 3- D conductors coated with anisotropic inhomogeneous materials using the FEM-PMA [ A]. 2002 3^rd International conference on microwave and millimeter wave technology proceedings,Beijing [ C]. Beijing,2002, (8) : 622 - 625.
  • 8Vouvakis M N, et al. A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems [J]. IEEE Trans. Antennas Propagat,2004,52(11) :3060- 3070.
  • 9Botha M M,et al.On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis[J]. IEEE Trans. Antennas Propagat, 2004, 52 ( 11 ): 3037 - 3047.
  • 10盛新庆,彭朕.合元极技术再认识——一种电大复杂目标散射混合计算技术的考察[J].电子学报,2006,34(1):93-98. 被引量:7

二级参考文献17

  • 1Jiming Song,Caicheng Lu,Weng Cho Chew.Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J].IEEE Trans.Antennas Propagat,1997,45(10):1488-1493.
  • 2Jianming Jin.The Finite Element Method in Electromagnetics[M].New York:Wiley,1993.
  • 3Xin-Qing Sheng,Jiming Song,Caicheng Lu,and Weng Cho Chew.On the formulation of hybrid finite-element and boundary-integral method for 3D scattering[J].IEEE Trans.Antennas Propagat,1998,46(3):303-311.
  • 4Jian Liu,Jianming Jin.A novel hybridization of higher order finite element and boundary integral methods for electromagnetics scattering and radiation problems[J].IEEE Trans Antennas Propagat,2001,49(12):1794-1806.
  • 5Xin-Qing Sheng,E K N Yung.Implementation and experiments of a hybrid algorithm of the finite-element boundary-integral method for open-region inhomogeneous electromagnetic problems[J].IEEE Trans Antennas Propagat,2002,50(2):163-167.
  • 6Jian Liu,Jianming Jin.A highly effective preconditioner for solving the finite element-boundary integral matrix equation for 3-D scattering[J].IEEE Trans.Antennas Propagat,2002,50(9):1212-1221.
  • 7Marinos N.Vouvakis,Seung-Cheol Lee,Kezhong Zhao,Jin-Fa Lee.A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems[J].IEEE Trans.Antennas Propagat,2004,52(11):3060-3070.
  • 8Matthys M.Botha,Jian-Ming Jin.On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis[J].IEEE Trans.Antennas Propagat,2004,52(11):3037-3047.
  • 9Xin-Qing Sheng,E K N Yung,C H Chan,J M Jin,W C Chew.Scattering from large bodies with cracks and cavities by fast and accurate hybrid finite-element boundary-integral method[J].IEEE Trans.Antennas Propagat,2000,48(8):1153-1160.
  • 10Jian Liu,Jianming Jin.Scattering analysis of a large body with deep cavities[J].IEEE Trans.Antennas Propagat,2003,51(6):1157-1167.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部