期刊文献+

一类新的优美树 被引量:5

Another Gracefull Trees
下载PDF
导出
摘要 Rosa等人于1966年提出了著名的优美树猜想,即任何树都是优美图。该猜想至今没有得到证明或否定,仅有一些特殊树类被证明是优美图。通过构造路Pn=v0v1…vn的平衡标号f使f(v0)=k,其中k为任意不大于n的非负整数,且4k≠n,3n,进而给出一种新的优美树的构造方法,使已知的优美树大大增加。 In 1966, Rosa conjectured that all trees are graceful, which has ever since been considered the famous Graceful Tree Conjecture (GTC). Now the conjecture still remains to be an open problem, and only a few kinds of trees are proved to be graceful. The number, however, can be enlarged by the approach presented in the paper. For any integer k ∈ { 0,1,2,…, n } and 4k ≠n, 3 n, there exists a bipartited labeling f of path Pn = v0 v1 … vn such that f(v0) = k. Based on this, a method for constructing bigger graceful trees by joining a path to a graceful tree is given and this makes much more trees to be graceful.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2008年第1期129-132,共4页 Journal of National University of Defense Technology
关键词 优美图 顶点标号 平衡标号 graceful graph vertex labeling balanced labeling path
  • 相关文献

参考文献9

  • 1Rosa A. On Certain Valuation of the Vertices of a Graph [M]. Theory of Graphs, Prec. Intemet, Sympos,Rome. 1966, 349- 355.
  • 2Gallian J A.A Dynamic Survey of Graph Labeling[J].The Electronic Journal of Combinatorics,2007.
  • 3Rosa A.On Certain Valuations of the Vertices of a Graph[J].Theory of Graphs,1967,349-355.
  • 4Huang C, Kotzig A, Roea A. Further Results on Tree labelings[J]. Utilitas Math, 1982, 31-48.
  • 5Hmciar P, Haviar A. All Trees of Diameter Five are Graceful[J]. Discrete Math, 2001, 133-150.
  • 6Burzio M,Ferrarese.the Subdivision Graph of a Graceful Tree is a Generate Graceful Trees[J].J.Combin.Math.Combin.comput,2003,44:47-63.
  • 7morgan D,Reea R.Using Skolem and hooked-skolem Sequences to Generate Graceful Trees[J].J.Combin.Math.Combin.Comput.2003,44:47-63.
  • 8Morgen D.Gracefully Labelled Tress from Skolem and related Sequences[D].Master degree thesis,University of newfoundland,2001.
  • 9Golomb S W.how to number a Graph[M].Graph theory and Computing,Academic Press,New York,1972,23-37.

同被引文献23

  • 1项荣武,张晓萍,闫心丽.R(4,3,n)型图的优美性[J].沈阳航空工业学院学报,2003,20(3):75-76. 被引量:4
  • 2杨显文.关于C_(4m)蛇的优美性[J].工程数学学报,1995,12(4):110-112. 被引量:55
  • 3严谦泰.图P_(2r,2m)的优美标号[J].系统科学与数学,2006,26(5):513-517. 被引量:23
  • 4ROSA A.On certain valuations of th vertices of a graph,theory of graphs[C] //New York:Gordian and Breach,1967:349-355.
  • 5GALLIAN J A.A dynamic survey of graph Labeling[J/OL].[2009-03-20].http://www.combinatorics.org/surveys.
  • 6A.Rosa,On certain valuations of th vertices of a graph,Theory of Craphs(Internat.Symposium,Rome,July 1966),Gordon and Breach,N.Y.and Dunod Paris,1967:349-355.
  • 7J.A.Gallian.A Dynamic Survey of Graph Labeling.The Electronic Journal of Combinarorics[FJ] ,(DS6),2009.http://www.combinatorics.org/Surveys.
  • 8SHEPPARD D A. The factorial representation of balanced labeled graphs[J]. Discrete Math, 1976,15 :379-388.
  • 9GALLIAN J A. A dynamic survey of graph labeling[J]. The Electronic Journal of Combinatorics,2009,16:1-219.
  • 10CHRISTIAN B. Graceful labeling of cycle snakes[J]. Ars Combin, 2001,60 : 85-96.

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部