期刊文献+

一端固支一端简支变厚度梁的弹性力学解 被引量:3

Elasticity Solution of Clamped-Simply Supported Beams With Variable Thickness
下载PDF
导出
摘要 研究了一端固支另一端简支连续变厚度梁在静力荷载作用下的应力和位移分布.通过引入单位脉冲函数和Dirac函数,将固支边等效为简支边与未知水平反力的叠加,利用平面应力问题的基本方程,导出满足控制微分方程及左右两端边界条件的位移函数的一般解,对上下表面的边界方程作Fourier级数展开,结合固支边位移为0的条件确定待定系数,得到的解是高精度的.数值结果与商业有限元软件ANSYS进行了比较,显示出很好的精度. The stress and displacement distributions of continuously varyingg thickness beams with one end clamped and the other end simply supported under static loads are ,studied. By introducing the unit pulse functions and Dirac functions, the clamped edge can be made equivalent to the simply supported one by adding the unknown horizontal reactions. According to the governing equations of plane stress problem, the general expressions of displacements, which satisfy the governing differential equations and the boundary conditions at two ends of the beam, can be deduced. The unknown coeffidents in the general expressions were then determined by using the Fourier sinusoidal series expansion along the upper and lower boundaries of the beams and using the condition of zero displacements at the clamped edge. The solution obtained has excellent convergence property. The numerical results being compared with those obtained from the commercial software ANSYS, excellent accuracy of the present method is demonstrated.
出处 《应用数学和力学》 EI CSCD 北大核心 2008年第3期253-262,共10页 Applied Mathematics and Mechanics
关键词 固支边 变厚度 Fourier展开 弹性力学解 beam clamped edge variable thickness Fourier expansion elasticity solution
  • 相关文献

参考文献10

二级参考文献29

  • 1朱纯章.悬臂压电梁自由端受集中力的解析解[J].南京工程学院学报(社会科学版),2001,2(1):12-15. 被引量:10
  • 2丁皓江,王国庆,梁剑.压电介质平面问题的一般解和基本解[J].力学学报,1996,28(4):441-448. 被引量:18
  • 3Ding H J,Int J Solids Structures,1996年,33卷,16期,2283页
  • 4Tzou H S,J Dynamic System Measurement Control,1991年,113卷,3期,494页
  • 5孙慷,压电学,1984年
  • 6徐芝纶,弹性力学,1979年
  • 7Y. Benveniste, Magneto-electric Effect in Fibrous Composites with Piezoelectric and Piezo-magnetic Phases[J]. Physical Review, 1995, B51:16424-16427
  • 8E. Pan, Exact Solution for Simply Supported and Multilayered Magneto-electro-elastic Plates[J]. ASME J. APP. MECH, 2001,68:608-618
  • 9H.J. Ding, G.Q. Wang, W.Q. Chen, A Boundary Integral Formulation and 2D Fundamental Solution for Piezoelectric Media[J]. Computer Methods in Applied Mechanics and Engineering , 1998,158(1-2):65-80
  • 10H.J. Ding, B. Chen, J. Liang, General Solutions for Coupled Equations for Piezoelectric Media, Int. J. Solids Struct.,1996,33:2283-2298

共引文献48

同被引文献34

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部