期刊文献+

一种有效的视频镜头检索方法研究 被引量:2

Effective Approach for Video Shot Retrieval
下载PDF
导出
摘要 镜头检索是基于内容的视频检索的重要内容。本文首先尝试将组合相似性用于镜头检索。与现有方法相比,本文提出的方法强调把镜头看作一个整体,全面客观地度量两个镜头的相似度。把两个镜头的相似度度量建立在组合相似性上:镜头看成由帧序列作为样本的组合,通过核方法,在高维空间假设特征向量表示的帧序列服从高斯分布,利用概率距离公式计算出两分布之间的距离,以此作为两个镜头的相似度。考虑到检索速度问题,给出了Chernoff距离和KL散度两种概率距离的改进算法。实验对比结果证实了本文所提方法在镜头检索中的优异表现。 Shot retrieval plays a critical role in content-based retrieval. Motivated by the theory of ensemble similarity, the paper proposed a novel approach based on probabilistic distance algorithm for shot retrieval. In contrast to existing algorithms, the p An ensemble similarity is used to approach emphasizes the integral of shot for effective similarity measure. calibrate the similarity between two shots: a shot can be treated as an ensemble that consists of a sequence of multiple frames. By kernel method, in a high dimension space the feature vector represented frames can be assumed to follow a Gaussian distribution model. Then the two Gaussian distributions is computed as the similarity ilistic distance between value between two shots. To improve the retrieval speed effectively, improved algorithms of Chernoff distance and KL divergence are also Experimental results indicate that the proposed approach achieves superior performance than some existing methods.
出处 《电子测量与仪器学报》 CSCD 2008年第1期58-61,共4页 Journal of Electronic Measurement and Instrumentation
关键词 基于内容的镜头检索 组合相似性 Chemoff距离 KL散度 content-based shot retrieval ensemble similarity Chernoff distance KL divergence
  • 相关文献

参考文献9

二级参考文献30

  • 1[1]Rui, Y., Huang, T.S. A uniform framework for video browsing and retrieval. In: Bovik, A., ed. The Image and Video Processing Handbook. Academic Press, 2000. 705~715.
  • 2[2]Ngo, C.W., Pong, T.C., Zhang, H.J., et al. Motion-Based video representation for scene change detection. In: Proceedings of the ICPR 2000. Barcelona, Spain, 2000.
  • 3[3]Irani, M., Anandan, P. Video indexing based on mosaic representations. Proceedings of the IEEE, 1998,86:905~921.
  • 4[4]Zhao, L., Qi, W., Li, S.Z., et al. Key-Frame extraction and shot retrieval using nearest feature line (NFL). In: Proceedings of the International Workshop on Multimedia Information Retrieval, in Conjunction with ACM Multimedia Conference 2000. Los Angeles, USA, 2000.
  • 5[5]Hanjalic, A., Lagendijk, R.L., Biemond, J. Automated high-level movie segmentation for advanced video-retrieval systems. IEEE Transactions on Circuits and Systems for Video Technology, 1999,9(4):580~588.
  • 6[6]Corridoni, J.M., Bimbo, A.D. Structured representation and automatic indexing of movie information content. Pattern Recognition, 1998,31(12):2027~2045.
  • 7[7]Rui, Y., Huang, T.S., Mehrotra, S. Exploring video structure beyond the shots. In: Proceedings of the IEEE Conference on Multimedia Computing and Systems. 1998. 237~240.
  • 8[8]Kender, J.R., Yeo, B.L. Video scene segmentation via continuous video coherence. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1998. 367~373.
  • 9[9]Ferman, A.M., Krishnamachari, S., Tekalp, A.M., et al. Group-of-Frames/pictures color histogram descriptors for multimedia applications. In: Proceedings of the ICIP 2000. 2000.
  • 10[10]Lin, T., Zhang, H.J. Automatic video scene extraction by shot grouping. In: Proceedings of the ICPR 2000. Barcelona, Spain, 2000.

共引文献265

同被引文献74

  • 1钟志,徐扬生,石为人,叶伟中,李家强.群体异常检测(英文)[J].仪器仪表学报,2007,28(4):614-620. 被引量:4
  • 2POPOOLA O P, WANG K. Video-based abnormal hu- man behavior recognition-a review [ J ], IEEE Transac- tions on System, Man, and Cybernetics Part C, 2012,42 (6) : 865-878.
  • 3COLLINS R T, LIPTON A J, KANADE T. A system for video surveillance and monitoring [ C]. Proceedings of the 1999 American Nuclear Society (ANS) Eighth In- ternational Topical Meeting on Robotic and Remote Sys- tems, Pittsburgh, PA, USA ,25-29April, 1999.12-19.
  • 4HARITAOGLU I, HARWOOD D, DAVIS L S. W4 : A real time system for detecting and tracking people [ C ]. Proceedings of the 1998 IEEE International Conference on Computer Vision and Pattern Recognition, Santa Bar- bara, CA, USA, 23-25June, 1998,962-969.
  • 5HUANG K,TAN T. Vs-star: a visual interpretation sys- tem for visual surveillance[ J]. Pattern Recognition Let- ters,2010,31 ( 15 ) : 2265-2285.
  • 6University of California, San Diego. UCSD Anomaly De-tection Dataset [ EB/OL ]. http ://www. svcl. ucsd. edu/ project-s/anomaly/dataset, html. 2010-10-10.
  • 7University of Minnesota. UMN abnormal events detection dataset [ EB/OL ]. http ://mha. cs. umn. edu/proj _ e- vents, shtml. 2009-4-12.
  • 8ADAM A, RIVLIN E, SHIMSHONI I, REINITZ D. Ro- bust real-time unusual event detection using multiple fixed-location monitors [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2008,30 ( 3 ) : 555-560.
  • 9TAMRAKAR A, ALI S, YU Q, et al. Evaluation of low- level features and their combinations for complex event detection in open source videos [ C ]. Proceedings of the 2012 IEEE InlLernational Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16- 21June,2012 : 3681-3688.
  • 10KWON J, LEE K M. A unified framework for event sum- marization and rare event detection [ C ]. Proceedings of the 2012 IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16-21June ,2012 : 1266-1273.

引证文献2

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部