期刊文献+

微粒群算法在地震波阻抗反演中的应用 被引量:2

Application of Particle Swarm Optimization in Seismic Impedance Inversion
下载PDF
导出
摘要 地震波阻抗反演是油藏描述和储层预测中的关键技术,其本质属于多参数的非线性组合优化问题,诸如人工神经网络、模拟退火、遗传算法等非线性反演方法在地震波阻抗反演中已经得到了运用。起源于生物社会学研究和生物行为学模拟的微粒群算法,在多参数、非线性、多极值函数优化问题中具有较强的优越性。通过分析微粒群算法的原理,本文用该非线性算法实现了地震波阻抗反演,并且在理论模型的实验中,证明了算法的可行性。 Seismic impedance inversion is the key technique in the reservoir description and estimation. It is essentially a method of optimizing the multi--parameter nonlinear combination. Nonlinear inversion methods, such as artificial neural network, simulated annealing, genetic algorithm etc. , have been applied into the seismic impedance inversion. Particle Swarm Optimization, originated from the study of biologic sociology and the simulation of biologic behavior, enjoys great superiority in the optimization of multi--parameter, nonlinear and multi--maximum function. By analyzing the principle of Particle Swarm Optimization, this paper adopts this nonlinear algorithm to realize the seismic impedance inversion and it is proved that the algorithm is feasible in the theoretical model experiment.
作者 张敏知
出处 《内蒙古石油化工》 CAS 2008年第2期13-14,共2页 Inner Mongolia Petrochemical Industry
关键词 微粒群算法 非线性反演 波阻抗 Particle Swarm Optimization nonlinear inversion seismic impedance
  • 相关文献

参考文献3

  • 1Kennedy J, Eberhart R. Particle swarm optimization [C] Proc. IEEE Int. Conference on Neural Networks. Perth, WA, Australia, 1995,1942-1948.
  • 2陈双全,王尚旭,季敏,张永刚.地震波阻抗反演的蚁群算法实现[J].石油物探,2005,44(6):551-553. 被引量:18
  • 3姚 姚.蒙特卡洛非线性反演方法及应用[M].北京:冶金工业出版社,1999.

二级参考文献13

  • 1Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, man, and Cybernetics-Part B: Cybernetics, 1996,26(1) :29~41
  • 2Dorigo M, Caro G D. Ant colony optimization: a new meta-heuristic[C]. Proceeding of the 1999 Congress on Evolutionary Computation, Washington, DC, USA,1999,1470~1477
  • 3Dorigo M,Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem[J] . IEEE Transactions on Evolutionary Computation, 1997, 1 (1): 53 ~66
  • 4Solnon C. Ants can solve constrained satisfaction problems [J]. IEEE Transactions on Evolutionary Computation, 2002,6 (4): 347~357
  • 5Maniezzo V , Colorni A. The ant system applied to the quadratic assignment problem[J]. IEEE Transactions on Knowledge and Data Engineering, 1999,11 (5): 769~778
  • 6Liang C, Smith A E. A ant system approach to redundancy allocation[Z]. Proceeding of the 1999 Congress on Evolutionary Computation, Washington, DC, USA,1999,1478~1484
  • 7Wagner I A, Bruckstein A M. Hamiltonian( t) - an ant-inspired heuristic for recongnizing hamiltonian graphs [ Z].Proceeding of the 1999 Congress on Evolutionary Computation, Washington,DC,USA, 1999,1465~1469
  • 8Leguizamon G, Michalewicz Z. A new version of ant system for subset problems[Z]. Proceeding of the 1999Congress on Evolutionary Computation, Washington,DC,USA, 1999,1459~1464
  • 9Schoofs L, Naudts B. Ant colonies are good at solving constraint satisfaction problems[Z]. Proceeding of the2000 Congress on Evolutionary Computation, La Jolla,CA,USA,2000,1190~1195
  • 10Bauer A, Bullnheimer B, Hartl R F, et al. A ant colony optimization approach for single machine total tardiness problem[Z]. Proceeding of the 1999 Congress on Evolutionary Computation, Washington, DC, USA,1999,1445~1450

共引文献19

同被引文献33

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部