期刊文献+

基于遗传神经网络的烟草病毒病预测 被引量:1

Tobacco Virus Disease Forecast Based on the Genetic Bp Net
下载PDF
导出
摘要 使用陕西长武1984~1998年的烟草病情资料及当地气象资料作为样本,将遗传算法与反向传播网络(BP网络)应用于烟草病毒病预测。在隐含层间使用变形的sigmoid函数,利用遗传算法优化网络权值和参数。训练时,样本中加入随机噪声,使用表决网综合输出。同时,改进了传统BP网络的收敛速度和泛化能力,预测结果基本符合实际值。 On the basis of genetic algorithm and back propagation network, the state of tobacco virus diseases was forecasted and predicted in this paper, according to the diseases state and climate data of Changwu city, Shanxi province from 1984 to 1998. The distorted sigmoid function was used as the active function in the hidden layer. The net power value and parameters were optimized by genetic algorithm. The random noise was added in training sample and exported by voted net. Constringency velocity and generalization ability was improved by amending traditional BP net. The value was tallied with forecast result.
作者 黄万夫 黄林
出处 《农机化研究》 北大核心 2008年第3期66-69,共4页 Journal of Agricultural Mechanization Research
关键词 植物保护 烟草病毒病 理论研究 BP网络 遗传算法 随机噪声 plant protection tobacco virus disease theoretical research BP network genetic algorithm random noise
  • 相关文献

参考文献8

二级参考文献40

共引文献169

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部