期刊文献+

基于瞬时互相关和STFT的LFM信号测向算法 被引量:3

A direction-finding method for LFM signals based on instantaneous cross correlation and STFT
下载PDF
导出
摘要 现代电子对抗中,实现对线性调频(LFM)信号这种低截获概率雷达信号的精确测向已经非常重要.针对LFM信号提出一种无模糊、高精度的DOA估计算法.该算法首先计算单基线天线接收到的信号的瞬时互相关,然后通过短时傅里叶变换(STFT)提取互相关输出中的单频信号.利用该信号的频率与到达角之间单调的对应关系实现对到达角的无模糊估计.算法克服了相位干涉仪测向算法中存在的多值模糊问题,并且由于只需要单基线天线,所以能够应用于天线孔径尺寸受限的场合.对算法的性能进行了理论分析,推导了测向算法的精度和估计误差,并且理论推导了角度分辨率和测角实时性之间的量化关系,仿真实验结果表明了该算法的正确性和有效性. In modern electronic counter measures, it' s of great importance to precisely estimate the BOA of LFM signals-a kind of LPI radar signal. A non-fuzzy and high precision DOA estimation algorithm for LFM signal is proposed in this paper, whereby the instantaneous cross-correlation of signals received by antennae is evaluated, and then the monochromatic signals are picked up with STFT. There is a unique correspondence between BOA and the frequencies of the monochromatic signals, which can be used to make an unambiguous DOA estimate. The proposed algorithm eliminates the ambiguity of multiple values that occur with a phase interferometer. And since it needs only a single baseline, the algorithm can be applied in situations where the physical size of the antenna is restricted. The performance of the algorithm was analyzed theoretically, and expressions for the precision and error of the estimation derived. Finally, a quantitative relationship between angle resolution and the real-time property of BOA was developed, and this formula is presented. Simulation findings prove the validity and effectiveness of this algorithm.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2008年第2期179-182,共4页 Journal of Harbin Engineering University
关键词 线形调频信号 DOA估计 短时傅里叶变换 瞬时互相关 LFM signal DOA estimation STFT instantaneous cross correlation
  • 相关文献

参考文献7

  • 1WU Y W, RHODES S, SATORIU E H. Direction of arrival estimation via extended phase interferometry [J]. IEEE Tran on AES, 1995,31(1) :375-381.
  • 2SCHMIDT R O. Multiple Location and signal parameter estimation[J].IEEE Trans on Antennas and Propagation, 1986,34(3) :276-280.
  • 3黄磊,吴顺君,张林让.一种没有特征值分解的MUSIC算法[J].系统工程与电子技术,2005,27(12):1988-1990. 被引量:3
  • 4司伟建.MUSIC算法多值模糊问题研究[J].系统工程与电子技术,2004,26(7):960-962. 被引量:21
  • 5司锡才 赵健民.宽频带反辐射导弹导引头技术基础[M].哈尔滨:哈尔滨工程大学出版社,1996..
  • 6张锡熊.低截获概率(LPI)雷达的发展[J].现代雷达,2003,25(12):1-4. 被引量:55
  • 7张贤达 保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1999.228-258.

二级参考文献11

  • 1[2]Jianjun Ge, Jun Zhou, Nianshen Xiong, etc. A LPI radar, system design and its performance. 1998 International Radar Symposium, Munich, Germany. 1998.9: 161~165
  • 2[4]Donald R Wehner . High-Resolution Radar. Artech House Boston London, 1995
  • 3Schmidt R O. Multiple Location and Signal Parameter Estimation[J]. IEEE Trans. on Antennas and Propagation, 1986, 34(3): 276-280.
  • 4Schmidt R O.A signal subspace approach to multiple emiiter location spectral estimation[M].Ph.thesis.Stanford University,Stanford,CA,1981.
  • 5Goldstein J S,Reed I S,Scharf L L.A multistage representation of the wiener filter based on orthogonal projections[J].IEEE Transactions on Information Theory,1998,44(7):2943-2959.
  • 6Hotelling H.Analysis of a complex of statistical variables into principal components[J].J.Educ.Psychol.,1933.24,417-441 and 498-520.
  • 7Goldstein J S,Reed I S.Reduced rank adaptive filtering[J].IEEE Trans.Signal Processing,1997,45,492-496.
  • 8Honig M L,Xiao W.Performance of reduced-rank linear interference suppression[J].IEEE Transactions on Information Theory,2001,47(5):1928-1946.
  • 9Dietl G,Zoltowski M D,Joham M.Recursive reduced-rank adaptive equalization for wireless communications[J].in Proc.SPIE 2001,4395,2001,16-27.
  • 10Ricks D,Goldstein J S.Efficient implementation of multi-stage adaptive weiner filters[A].Antenna Applications Symposium[M].Allerton Park,Illinois,2000,20-22.

共引文献190

同被引文献27

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部