期刊文献+

掺Cd对ZnO薄膜光学性能的影响 被引量:3

Cd-doping Effects on Structure and Optical Properties of ZnO Thin Films
下载PDF
导出
摘要 采用溶胶-凝胶法在石英玻璃上制备了不同掺Cd浓度的ZnO薄膜。X射线衍射(XRD)结果表明,所制备的薄膜具有c抽择优取向,随着Cd掺杂浓度的升高,(002)峰向低角度方向移动。UV透射曲线表明,薄膜具有明显的紫外吸收边,通过改变Cd的掺入浓度,可以使吸收边向长波方向移动并被控制在一定范围内,从而使薄膜的禁带宽度连续可调;薄膜的光致发光(PL)谱显示,ZnO薄膜的PL谱是由紫外激子发光峰和蓝光发光带组成,通过掺入Cd可使紫外带边发射的峰位向低能端方向红移,这与透射谱中吸收带边的红移相吻合,由紫外发光峰得到的光禁带宽度和由透射谱拟合得到的光禁带基本一致。对不同掺杂浓度的薄膜进行了比较,发现Cd掺入量为8%摩尔分数时ZnO薄膜具有最佳的结构性能和发光性能。 Pure and Cd doped ZnO thin films were prepared on quartz glass substrates by sol-gel method. X-ray diffraction (XRD) was used to analyze the structure properties of the thin films. It was found that all the films prepared have a preferential c-axis orientation. The peak position of the (002) plane shifted to the low angle value with the increase of Cd doping. From the transmittance spectrum, the optical absorption-edge obviously shifted to the longer wavelength with increasing Cd doping. It was found from the photoluminescence (PL) measurement that the spectrum obtained under room temperature contains two emissions bands: the violet band with a peak at 3. 24eV and the blue band at 2.70eV. As the concentration of the Cd increases, the peak of the violet emission has a red-shift to region of lower photon energy, which is coincident with the red-shift of the optical absorption. The band gap energies of Cd doped ZnO films calculated by a linear fitting method from the transmittance spectrum are consistent with those values from data of the PL spectrum. By comparison of the different spectrum with different concentrations of Cd doping, it is concluded that the ZnO:Cd thin film with concentration of 8mo1% has the optimal structure and luminescence properties.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2008年第1期213-217,共5页 Journal of Synthetic Crystals
基金 电子薄膜与集成器件国家重点实验室开放基金资助(No.L08010301JX0615)
关键词 溶胶-凝胶法 Cd掺杂 光学禁带 红移 Sol-gel method Cd-doped optical band-gap red shift
  • 相关文献

参考文献2

二级参考文献26

  • 1Wu H Z, Xu X L, Qiu D J et al 2000 Ghin. Phys. Lett. 17694
  • 2Tang Z K, Wong G K L, Yu P, Kanaki M, Ohtomo A,Koinuma H and Segawa Y 1998 Appl. Phys. Lett. 72 3270
  • 3Takahashi N, Kaiya K, Omichi K:-Nakamura T, Okamoto S and Yamamoto H 2000 J. Cryst. Growth 209 822
  • 4Klingshirn C 1975 Phys. Status Solidi b 71 547
  • 5Makino T, Chia C H, Tuan N T, Sun H D and Segawa Y 2000 Appl. Phys. Lett. 77 975
  • 6Kong Y C, Yu D P, Zhang B, Fang W and Feng SQ 2001 Appl. Phys. Lett. 78 407
  • 7Ohtomo A, Kawasaki M, Ohkubo I, Koinuma H, Yasuda T and Segawa Y 1999 Appl. Phys. Lett. 75 980
  • 8Coli C and Bajaj K K 2001 Appl. Phys. Lett. 78 2861
  • 9Sharama A K, Narayan J, Muth J F, Teng C W, Jin G,Kvit A, Kolbas R M and Holland O W 1999 Appl. Phys.Lett. 75 3327
  • 10Ohtomo A, Kawasaki M, Sakurai Y, Ohkubo I, Shiroki R, Yoshida Y, Yasuda T, Segawa Y and Koinuma H 1998 Mater. Sci. Eng. B 56 263

共引文献7

同被引文献24

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部