期刊文献+

Sm_2Co_(17)型高温稀土永磁的微结构与磁性能 被引量:5

Microstructure and coercivity mechanism of Sm_2Co_(17) type high temperature rare-earth permanent magnets
下载PDF
导出
摘要 采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、磁力显微镜(MFM)和原位X射线衍射(XRD)等探讨Sm2Co17型稀土永磁材料的胞状结构、畴结构和相结构及其对磁性能的影响,制备使用温度为500℃的高温稀土永磁材料。结果表明,Sm(CoFe0.11Cu0.10Zr0.03)7.5具有很好的高温稳定性,500℃时的磁性能为:Br=0.708 T,Hci=646.7 kA/m,BHmax=85.4 kJ/m3;其磁畴宽度远小于晶粒尺寸,但大于胞状结构的尺寸,使用温度较高的磁体具有较小的磁畴和胞状结构;当使用温度小于300℃时,Sm2Co17型磁体内存在的相结构为2:17R、2:17H和1:5相,矫顽力主要受1:5相的钉扎而产生;当300℃<t<tc1:5时,部分1:5相转变成中间相并最终转变成2:7相,磁体的矫顽力将由1:5相钉扎和2:7相形核所控制;当t≥tc1:5时,磁体的矫顽力将全部由非磁性1:5相和2:7相形核所控制。 High temperature Sm2Co17-based permanent magnets used at 500 ℃ were attained and the cellular structure, domain structure and crystalline phase were investigated by transmission electron microscopy (TEM), scaning electron microscopy (SEM), magnetic force microscopy (MFM) and in-sute X-ray diffractometry. Sm(CoFe0.11Cu0.10Zr0.03)7.5 shows better high temperature properties at 500℃ with Br=0.708 T, Hci=646.7 kA/m, BHmax=85.4 kJ/m^3. It is discovered that the domain spacing is much smaller than the grain size and larger than the cellular structure. The magnet used at higher temperature shows smaller domain spacing and cell size. When the temperature is lower than 300℃, the microstructure of the magnet consists of 2:17R phase, 1:5 phase and lamella phase, and the the 1:5 phase acts as a barrier for domain wall displacements. In the intermediate temperature range (300℃ 〈t〈tc^1:5), a part of 1:5 phase transform to 2:7 phase, and the coercivity mechanism changes to pinning at the 1:5 phase and nucleation at the 2:7 phase. With increasing the temperature higher than the Curie temperature of the 1:5 cell walls a nucleation mechanism at the 1:5 non-magnetic phase and 2:7 phase may be dominant.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2008年第1期72-77,共6页 The Chinese Journal of Nonferrous Metals
基金 湖南省自然科学基金资助项目(04JJ6029)
关键词 Sm2Co17型高温稀土永磁 胞状结构 畴结构 矫顽力 Sm2Co17 type high temperature permanent magnet cellular structure domain structure coercivity
  • 相关文献

参考文献17

  • 1李卫,朱明刚.高性能稀土永磁材料及其关键制备技术[J].中国有色金属学报,2004,14(F01):332-336. 被引量:21
  • 2SACHAN, M, MAJETICH S A. Combustion-driven compaction of nanostructured Sm-Co and Fe mixtures[J]. IEEE Transactions on Magnetics, 2005, 41(10): 3874-3876.
  • 3AICH S, RAVINDRAN V K, SHIELD J E. Highly coercive rapidly solidified Sm-Co alloys[J]. Journal of Applied Physics, 2006, 99(8): 08B521-523.
  • 4ZHANG Y, GABAY A M, HADJIPANAYIS G C. Observation of the lamellar phase in a Zr-free Sm(Co0.45Fe0.15Cu0.4)5 alloy[J]. Applied Physics Letters, 2005, 87(14): 141910-141915.
  • 5CHEN C H, HUANG M Q, FOSTER J E, Monnette G. Middleton J, Higgins A, Liu S. Effect of surface modification on mechanical properties and thermal stability of Sm-Co high temperature magnetic materials[J]. Surface and Coatings Technology, 2006, 201(6): 3430-3437.
  • 6冯海波,盛建锋,龚维幂,于荣海.Sm(Co,Fe,Cu,Zr)_Z(6.5≤z≤8.5)高温永磁合金的组织结构与性能[J].材料科学与工艺,2006,14(4):442-448. 被引量:3
  • 7LI Li-ya, YI Jian-hong, HUANG Bai-yun, PENG Yuan-dong, DU Juan. Microstructure of Sm2Co17 magnets and its influence on coercivity[J]. Trans Nonferrous Met Soc China, 2004, 14(4): 790-793.
  • 8YAN A, GUTFEISCH O, HANDSTEIN A, et al. Microstructure, microchemistry and magnetic properties of melt-spun Sm(Co,Fe,Cu,Zr)z magnets[J]. Journal of Applied Physics, 2003, 93(10): 7975-7977.
  • 9GUTFLEISCH O, MULLER K H, KHLOPKOV K, et al. Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets[J]. Acta Materialia, 2006, 54(3): 997-1008
  • 10荣传兵,张宏伟,张健,张绍英,沈保根.纳米晶永磁中面缺陷对畴壁钉扎机理的研究[J].物理学报,2003,52(3):708-712. 被引量:8

二级参考文献53

  • 1[13]Kronmuller H 1987 Phys. Stat. Sol. (b) 385 144
  • 2[14]Goll D, Kleinschroth I, Sigle W and Kronmüller H 2000 Appl. Phys. Lett. 76 1054
  • 3[1]Brown W F 1959 J. Appl. Phys. 30 1305
  • 4[2]Kronmüller H, Durst K D and Sagawa M 1988 J. Magn. Magn. Mater. 74 291
  • 5[3]Buschow K H J 1991 Rep. Prog. Phys. 54 1123
  • 6[4]Hilzinger H R and Kronmüller H 1977 Appl. Phys. 12 253
  • 7[5]Liu J H, Luo H L and Wang J 1992 J. Phys. D: Appl. Phys. 25 1238
  • 8[6]Kneller E F and Hawig H 1991 IEEE Trans. Magn. 27 3588
  • 9[8]Hadjipanayis G C 1999 J.Magn. Magn. Mater. 200 373
  • 10[9]Goll D, Seeger M and Kronmüller H 1998 J.Magn. Magn. Mater. 185 49

共引文献29

同被引文献18

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部