期刊文献+

放电等离子烧结制备Zn-Cu-Sb-Bi合金的热电性能

Thermoelectric properties of Zn-Cu-Sb-Bi alloys prepared by spark plasma sintering
下载PDF
导出
摘要 采用真空熔炼/放电等离子烧结(SPS)方法制备P型Zn4-xCuxSb3-xBix(x=0~0.8)材料,研究该合金的组织结构和热电性能。结果表明,x<0.2时,Zn4-xCuxSb3-xBix材料的Seebeck系数随x值增大而增大,当x=0.2时达到最大值;而当x>0.2后,Seebeck系数又随x值增大而下降。在x=0.2和487 K的条件下,Seebeck系数达到最大值,为249.2μV/K。合金的电导率随Cu和Bi含量增加而增大。借助Zn4-xCuxSb3的热扩散系数,计算得到材料的热导率随x值增大而增大;在574 K,x=0.4时,Zn4-xCuxSb3-xBix合金的最大热电优值(ZT)为0.53,比同温度下β-Zn4Sb3合金的ZT值大0.07。 P-type Zn4-xCuxSb3-xBix (x=0-0.8) alloys were prepared through vacuum melting and spark plasma sintering, and their structures were characterized. The results show that the Seebeck coefficient (α) increases with molar fraction (x) up to x=0.2 and then decreases, the electrical conductivity (α) increases with increasing molar fraction x value. Considering the same fabrication technology of Zn4-xCuxSb3-xBix and Zn4-xCuxSb3 with the same x, the measured thermal diffusivities of Zn4-xCuxSb3 were used to calculate the thermal conductivities of Zn4-xCuxSb3-xBix. A relative enhancement of ZT is attained for Zn3.6Cu0.4Sb3.6Bi0.4, whose ZT is 0.53 at 574 K, about 0.07 higher than that of Zn4Sb3 at the same temperature.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2008年第1期103-107,共5页 The Chinese Journal of Nonferrous Metals
基金 宁波市国际科技合作资助项目(2007B10020) 宁波市自然科学基金资助项目(2006A610058)
关键词 Zn-Cu-Sb-Bi合金 共掺杂 热电性能 放电等离子烧结 Zn-Cu-Sb-Bi alloys co-doping thermoelectric properties spark plasma sintering (SPS)
  • 相关文献

参考文献16

  • 1MAYER H W, MIKHAIL I, SCHUBERT K. Uber einige phasen der Mischungen ZnSbN und CdSbs[J]. J Less Comm Metals, 1978, 59(1): 43-52.
  • 2NYLEN J, ANDERSSON M, LIDIN S,HAUSSERMANN U. The structure of α-Zn4Sb3: Ordering of phonon-glass thermoelectric material β-Zn4Sb3[J]. J Am Chem Soc, 2004, 126(50): 16306-16307.
  • 3SNYDER G J, CHRISTENSEN M, NISHIBORI E. Disordered zinc in Zn4Sb3 with phonon glass, electron crystal thermoelectric properties[J]. Nature Mater, 2004, 3: 458-463.
  • 4TSUTSUI M, ZHANG L T, ITO K, YAMAGUCHI M. Effects of in-doping on the thermoelectric properties of β-Zn4Sb3[J]. Intermetallics, 2004, 12(7/9): 809-813.
  • 5UENO K, YAMAMOTO A, NOGUCHI T, INOUE T, SODEOKA S, TAKAZAWA H, LEE C H, OBARA H J. Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance: Ⅰ. Physical properties and thermoelectric performance[J]. J Alloys and Compd, 2004, 384(1/2) 254-260.
  • 6CAILLAT T, FLEURIAL J P, BORSHCHEVSKY A. Preparation and thermoelectric properties of semiconducting Zn4Sb3[J]. J Phys Chem Solids, 1997, 58(7): 1119-1125.
  • 7CUI J L, XUE H F, XIU W J, JIANG L, YING P Z. Thermoelectric properties of p-type pseudo-binary (Ag0.3656Sb0.558Te)x- (Bi0.5Sb1.5Tes)1-x (x=1.0) alloys prepared by spark plasma sintering[J]. J Solid State Chem, 2006, 179(12): 3751-3755.
  • 8HE Ze-ming, PLATZEK D, STIEWE C, CHEN H, KARPINSKI G, MILLER E. Thermoelectric properties of hot-pressed Al- and Co-doped iron disilicide materials[J]. J Alloys and Compd, 2007, 438(1/2): 303-309.
  • 9NAKAMOTO G, SOUMA T, YAMABA M, KURISU M. Thermoelectric properties of (Zn1-xCdx)4Sb3 below room temperature[J]. J Alloys and Compd, 2004, 377(1/2): 59-65.
  • 10VIENNOIS R, RECORD M C, IZARD V. Raman scattering study of the lattice dynamics of β-Zn4-xCdxSb3[J]. J Alloys and Compd, 2007, 440(1/2): 22-25.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部